Tag: Environmental policy

Insights and Research Shared at the 2023 FREE Network Retreat

FREE network retreat Image from the conference

The 2023 FREE Network Retreat, an annual face-to-face event for members of the FREE Network, gathered its representatives to share and exchange research ideas and to discuss its institutes’ respective work and joint efforts within the Network. An academic session highlighted multiple overarching areas of interest and opportunities for research collaboration and included a plenary session on topics ranging from theoretical underpinning of Vladimir Putin’s regime to climate change beliefs and to consumer behaviour in credit markets. A session addressing the respective institute’s work during the last year also demonstrated the importance and relevance of the FREE Network’s joint initiatives on gender, democracy and media, and climate change and environment: FROGEE, FROMDEE and FREECE. This brief gives a short outline of the plenary session and an overview of some further topics covered during the conference.  

The Academic Day

The Academic Day consisted partly of a plenary session and partly of an academic session. The academic session was outlined to demonstrate the wide spectrum of research interests within the network and to promote and highlight the opportunities for research collaboration. Designed as a series of poster sessions, each organized around a common research theme, it allowed for an exchange of ideas between presenting researchers and the audience while displaying the overlap of the various research interests across the institutes. At the same time, the poster session combined the broad range of topics within 10 overarching subjects (trade, gender, migration and education, public economics, energy, labor, political economy and development, macro, conflict, and theory and auctions).

The plenary session further illustrated the wide variety of topics the FREE Network researchers’ work on. During the plenary session, three distinguished presentations were held, summarized in what follows.

“Why Did Putin Invade Ukraine? – A Theory of Degenerate Autocracy”

Firstly, Konstantin Sonin, Professor at the University of Chicago Harris School of Public Policy, gave a presentation of his working paper (with Georgy Egorov, Northwestern University) in which the Russian full-scale invasion of Ukraine is explained through a theoretical framework on dictators’ decision-making in degenerate autocracies.

Sonin outlined how the beliefs about Ukraine in Kremlin, prior to the invasion, were factually wrong. For example, Kremlin believed that Ukraine, despite plenty of facts pointing in the opposite direction, lacked a stable government and had an incapable army. Further, it was believed that the US and Europe wouldn’t care about Ukraine and that Russian troops would be welcomed as liberators – the latter exemplified by the fact that Russia sent police and not the army during the first phase of the invasion. He also stressed that the decision to invade Ukraine is likely to have disastrous consequences for Vladimir Putin, his regime, and for Russia as a whole. This is, however, not the first example of a disastrous decision made by a leader of an autocratic regime, leading up to the question: What explains such choices that should not rationally have been made? And how can leaders make them in highly institutionalized environments where they are surrounded by councils and advisors who are supposed to possess the best expertise?

The model presented by Sonin assumes a leader in such highly institutionalized environment that wishes to stay in power and whose decisions are based on input from subordinates. The subordinates differ in level of their expertise and the leader thus chooses the quality of advice that he receives through his choice of subordinates.  In turn, while giving advice to the leader, the subordinate considers two factors: the vulnerability of the leader and their own prospects should the leader fall. In equilibrium there is a tradeoff as competent subordinates are also less loyal (since a more competent person might know when to switch alliances and have better prospects if the regime changes).

The leader also has access to repression as an instrument. Repression decreases his changes to be overthrown but raises the stakes for a potential future power struggle, as a leader with a history of repression is more likely to be repressed by his successor.

This interaction creates a feedback loop. If a dictator chooses repression, he feels more endangered, and he then chooses a more loyal subordinate who is less likely to deceive him for personal gain under a potential new regime. However, this leads to the appointment of less competent subordinates whereafter the information that flows to the leader becomes less and less reliable – as illustrated by Kremlin’s beliefs about Ukraine prior to the war.

There are three types of paths in equilibrium, Sonin explained; 1. “stable autocracy”, with leaders altering in power and choosing peaceful paths without repressions 2. “degenerate autocracy” – where the incumbent and opponent first replace each other peacefully and then slide into the repression-based change of power (until one of them dies and the story repeats), and 3. “consecutive degenerate autocracy” – where each power struggle is followed by repression.

Concluding his presentation, Sonin highlighted that in a degenerate autocracy such as Russia, individual decisions by the leader are rarely crucial due to the high level of institutionalization. However, as shown by the model, the leader is inevitably faced with a situation where he is surrounded by incompetent loyalists feeding him bad intel and setting him up to make disastrous decisions – most recently displayed in Vladimir Putin’s decision to invade Ukraine.

“Facing the Hard Truth: Evidence from Climate Change Ignorance”

Pamela Campa, Associate Professor at Stockholm Institute of Transition Economics, gave the conference’s second presentation, which detailed her work (with Ferenc Szucz, Stockholm University) on climate change skepticism.

Campa opened her talk with the current paradox regarding climate change, where, in the scientific community there is a strong consensus about the existence of climate change, but in society at large, skepticism is largely prevalent. This can be exemplified by one quarter of the US population not believing in global warming in 2023, and Europeans not believing in the fact that humans are the main driver of climate change.

According to Campa, the key question to answer is therefore “Why does ignorance about climate change persist among the public – in spite of the overwhelming evidence?”. One possible explanation may be a deficit in comprehension; people simply don’t understand the complexity of climate change and thus follow biased media and/ or politicians more or less sponsored by lobbyists. However, research have shown scientifical literacy to be quite uncorrelated with climate change denial, contradicting the above explanation. The second hypothesis, and of focus in the study, instead revolve around the concept of information avoidance. To test the hypothesis that people actively avoid climate change information, the authors key in on coal mining communities in the US having been exposed to negative shocks in the form of layoffs. These communities are of interest given their strong sense of identity and the fact that they are directly affected by the green transition. Arguably, a layoff shock would negatively affect not only their economy, but also pose a threat to their perceived identity. Given the context, it can thus be assumed that these communities to a larger extent would avoid information on climate change and information post-shock to restore the threatened identity.

The authors consider US counties experiencing mass layoff (more than 30 percent of mining jobs lost between 2014 and 2017) as treated counties, finding that in these counties, learning about climate change is 30 to 40 percent lower than in counties having experienced no mass layoffs. To account for the fact that the layoff itself may cause changes in learning, the authors also consider an instrument variable analysis in which gas prices are exploited as instrument for the layoffs – once again displaying the fact that people in affected communities believe climate change to be caused by humans to a lesser extent, when compared to counties in which no mass layoffs had occurred.

Interestingly, when controlling with other industries with somewhat similar characteristics (such as metal mining), the drop in climate change learning disappears, feeding in the notion of “identity-based information avoidance”.

The lack of support for and consensus among the public of the ongoing climate change and its drivers might pose a threat for the green transition as well as reduce personal effort to reduce the carbon footprint, Campa concluded.

“Consumer Credit with Over-Optimistic Borrowers”

In the plenary session’s last presentation, Igor Livshits, Economic Advisor and Economist at the Federal Reserve Bank of Philadelphia, presented his working paper (with Florian Exler, University of Vienna, James MacGee, Bank of Canada and Michèle Tertilt, Mannheimer University) on consumer credit and borrower’s behaviour.

There has been much debate on whether and how to regulate consumer credit products to limit misuse of credit. In 2009/2010 several initiatives and regulations (such as the 2009 Credit Card Accountability Responsibility and Disclosure Act) were introduced with the aim of protecting consumers and borrowers from arguments that sellers of credit products exploit lack of information and cognitive capacity of borrowers. There is however a lack of evaluation of such arguments and subsequent regulations, which Livshits explained to be the motivation behind the paper.

The paper differentiates between over-optimistic borrowers (behaviour borrowers) and rational borrowers (rationalists). While both types face the same risks, behaviour borrowers are more prone to shocks and are at the same time unaware of these worse risks (i.e., they believe they are rationalists). Focusing on these types of borrowers, the paper introduces a model in which the lenders endogenously price credit based on beliefs about the borrower type. Households decide whether to spend or save and if to file for bankruptcy in an environment in which they are faced with earning shocks and expense shocks.

In this structural model of unsecured lending and default, Livshits finds that behavioral borrowers’ “risky” behaviour negatively affects rationalists since both types are pooled together and, thus rationalists are overpaying to cover for the behaviour borrowers. A calibration of the model also suggests that behavioral borrowers borrow too much and file for bankruptcy too little and too late.

Livshits argued that the model does not provide evidence of the notion that borrowers need protection from lenders, but rather that borrowers need to be protected from themselves. In fact, had behaviour borrowers been made aware of the fact that they are overly optimistic about the actual state of their future incomes, they would borrow 15 percent less.

To address the increased risks behaviour borrowers take at the cost of rationalists, policies such as default made easier, taxation on borrowing, financial literacy efforts and score-dependent borrowing limits could all be considered. Such policies may lower debt and reduce bankruptcy filings but as they may also reduce welfare and exhibit scaling difficulties.

Updates from the Institutes

During the Retreat, the respective institutes shared the previous year’s work, and updates within the FREE Network’s three joint projects were also presented. These go under the acronyms of FROMDEE (Forum for Research on Media and Democracy in Eastern Europe), FREECE (Forum for Research on Eastern Europe; Climate and the Environment) and FROGEE (Forum for Research on Gender Economics in Eastern Europe), and address areas of great relevance in Eastern Europe and the Caucasus. Researchers from all FREE Network institutes work on these topics, with the most recent policy paper written in coordination by SITE, KSE and CenEA (with expert Maja Bosnic, Niras International Consulting). The policy paper focuses on the gender dimension of the reconstruction of Ukraine – putting emphasis on the necessity of gender budgeting principles throughout the various parts of reconstruction.  An upcoming joint research paper will consider the effects of gasoline price increase on household income across the Network’s countries, written under the FREECE umbrella.

The three themes of gender, media and democracy, and environment and climate are not only purely research topics within the institutes. They also reflect developments and challenges that the institutes to a various extent face in the respective contexts in which they operate. The work focusing on the reconstruction of Ukraine is an excellent example of an area that encompasses all three.

Another example of the relevance of the three themes features prominently in one of the institutes’ most tangible contribution to their respective societies: their education programs. Nataliia Shapoval, Vice President for Policy Research at Kyiv School of Economics (KSE), emphasized how KSE has – amid Russia’s war on Ukraine – managed to greatly expand. Over the past year, KSE has launched 8 new bachelor’s and master’s programs, some of which are directly targeted at ensuring postwar reconstruction competence. On a similar note, Lev Lvovskiy, Academic Director at the Belarusian Research and Outreach Center (BEROC) mentioned the likelihood of next year being able to offer students a bachelor’s program in economics and several business courses in Vilnius – BEROC’S new location. BEROC’s effort in providing quality education in economics to Belarus’ exile youth is considered a fundamental investment in the future of the country – providing a competent leading class capable of installing democracy and fair elections in Belarus once the current regime is gone. The emphasis on education was further highlighted by Salome Gelashvili, Practice Head, Agriculture & rural policy at the International School of Economics Policy Institute (ISET-PI) who not only mentioned the opening of a master’s program in Finance at ISET but also the fact that an increasing number of students who’ve recently graduated from PhD’s abroad are now returning to Georgia. Such investments into education are necessary to counter Russian propaganda in the region all three agreed, emphasizing the need to continually stem Russia’s negative influence in the region. This investment into education is also important to hinder countries from sliding away from democratic values – realized in Belarus and threatening in Georgia.

To further delve into the issues of democratic backsliding, a tendency that has been recently observed not only in the region but also more widely across the globe, FROMDEE will organize an academic conference in Stockholm on October 13th, 2023.

Concluding Remarks

The 2023 FREE Network Retreat provided a great opportunity for the Networks’ participants to jointly take part of new research and to share experiences, opportunities, and knowledge amongst each other. The Retreat also served as reminder of the importance of continuously supporting economic and democratic development, through research, policy work, and networking, in Eastern Europe and the Caucasus.

List of Presenters

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Environmental Enforcement in the EU: Insights from Administrative Cases in the US

20230523 Environmental Enforcement Image 01

In March 2023, the European Parliament’s legal affairs committee voted unanimously in favor of a proposed update to the EU Directive on environmental crimes (Directive 2008/99/EC). The update seeks to step up enforcement of environmental legislation across Members States through criminal law aimed at severely punishing very serious environmental offenses. We argue that, while laudable in its goal of strengthening enforcement of environmental regulation at the EU level, the current effort might be insufficient since moderately serious offenses might remain largely unpunished. To address this shortcoming, we propose harmonizing administrative law as well. We consider additional benefits from relying on administrative law in terms of flexibility of punishment design, based on the US experience of using environmentally beneficial projects performed in affected areas as a form of punishment in administrative environmental settlements. We discuss evidence on the merits and potential limitations of the US approach based on Campa and Muehlenbachs (2022) and conclude that such an approach is worth considering in the EU context.

While the EU has set aggressive pollution reduction targets across its Member States (European Commission, 2021a), for example pledging to reduce deaths due to particulate matters to 55 percent of 2005 levels by 2030 (European Commission, 2023a), much work remains to be done. As documented in Lehne (2021), in 2020 all countries in Europe reported PM2.5 concentrations above the World Health Organization (WHO) guideline of 5mg/m3. Six countries, including three EU Member States (Italy, Croatia, and Poland) reported levels above the EU’s annual limit value of 25mg/m3. Further, Bulgaria, Poland, Portugal, Croatia, and Romania did not meet national targets for PM2.5 reduction (European Environment Agency, 2023). Main contributors to PM2.5 pollution are transportation and industrial activity, including energy production. High concentrations of these particles are known to increase physical and mental health risks (Persico, 2022; Persico et al., 2016), and risk of premature deaths (Fuller et al., 2022).

Environmental concerns across EU Member States are also not limited to air pollution. Across the EU, 28 percent of groundwater sources are affected by pollution from agriculture, 14 percent from industrial contamination, and 7.5 percent from mining waste (Kampa et al., 2021). The persistent pollution problems in the EU and their unequal distribution across regions despite growing EU-level environmental legislation underscores the importance of law enforcement. While all EU Member States are theoretically subject to the same overarching environmental standards and regulations, the enforcement of environmental laws differs widely across countries. To address this issue, the EU Commission (henceforth EC) has recently taken steps to further harmonize environmental enforcement across EU Member States.

In this brief we consider the EC’s proposal and argue that, while commendable in the goal of strengthening enforcement of environmental regulation at the EU level, it is also quite limited in terms of enforcement tools that it considers. Specifically, we discuss potential advantages of leveraging administrative law tools to enforce environmental regulation, whereas the EC approach is currently focused on criminal law. We consider the higher probability of prosecution and the enhanced flexibility in the type of penalties allowed by administrative enforcement actions. Finally, we discuss results from Campa and Muehlenbachs (2022), which studies the use of administrative penalties for environmental violations in the US and draws some lessons for environmental enforcement in other jurisdictions.

Strengthening Environmental Enforcement at the EU Level

While environmental regulation is a shared competence of the EU, enforcement has historically been left to national environmental authorities (European Parliament, 2016). In the face of a lack of institutional capacity at the national level, a result of this arrangement are generally low levels of environmental enforcement, widely heterogeneous across Member States (Mazur, 2011). EU institutions have tried unsuccessfully over time to address this challenge and harmonize enforcement across EU Member States. An early attempt was made in 2001, when the EU put in place minimum standards for environmental inspections that Member States carry out, though these were only non-binding guidelines, and Member States could not be sanctioned for flouting them (European Parliament, 2001). Mandatory standards were then introduced in 2008, with the EU Directive on environmental crimes (Directive 2008/99/EC), which forced national governments to apply criminal sanctions to those causing “substantial damage” to the environment. However, it has typically been difficult for the EC to sanction non-abiding Member States. Moreover, the obligation is limited to areas where the EU has competence and does not include minimum penalties.

In another attempt to step up their enforcement efforts, in 2016 the EC began publishing the annual Environmental Implementation Review, where each country is evaluated on its environmental affairs and enforcement (European Commission, 2023b). Although this does not improve the EC’s ability to efficiently sanction Member States, it does increase scrutiny and visibility. In 2021, the EC tabled a proposal to update the 2008 Directive on environmental crimes (European Commission, 2021b). The proposal acknowledged the insufficient number of environmental criminal cases successfully investigated and prosecuted as well as the large discrepancies in the transposition of the 2008 Directive across Member States. Against this background, the EC proposed to enlarge the scope of the 2008 Directive, establish minimum penalties, foster cross-border investigation and prosecution, and promote data collection and dissemination on criminal enforcement actions. In March 2023, the European Parliament’s legal affairs committee voted in support of the EC proposal, extending the list of offenses that would be criminally charged and increasing the size of the minimum penalties.

Environmental Enforcement, Administrative Law and “In-kind” Punishment

The efforts of EU institutions to improve and harmonize enforcement are exclusively focused on criminal law instruments. The EC’s 2021 proposal specifically links poor enforcement in Member States to their reliance on administrative law, which limits fines and thus allegedly reduces the deterrence value of enforcement actions. Indeed, sufficiently high fines are considered crucial to deter future violations (see, e.g., Aguzzoni et al., 2013). However, we argue that reliance on administrative law also has some advantages. In particular, we consider two potential benefits of administrative law based on existing studies, namely higher probability of case initiation and more flexibility in terms of penalty design.

Probability of Case Initiation

One of the shortcomings of the current enforcement framework highlighted by the EC is the very low number of environmental criminal cases that are ultimately prosecuted. Research on enforcement tends to link the low frequency of observed criminal cases to the high cost of criminal proceedings, especially relative to more informal administrative procedures (Faure and Svatikova, 2012). The cost dimension is especially relevant for cases that are moderately serious, but that nevertheless in aggregate contribute significantly to environmental degradation. The probability of catching violations is also relevant, together with the size of the penalty. A very large penalty for a criminal case that is highly unlikely to be prosecuted might be less deterring than a moderate penalty associated with very high probability of prosecution.

“In-kind” Penalties

Federal environmental regulations in the US are enforced through a combination of administrative and criminal law. The Environmental Protection Agency (EPA) initiates administrative cases or refers them to the Department of Justice when the gravity of the violation is large. Administrative cases result in settlements where the defendant can be ordered to pay a fine, which can vary from a few thousand to a few million dollars and which is determined according to various factors, such as the magnitude of environmental harm, the firm’s economic gain from violation, its violation history, and its ability to pay. Additionally, when a fine is established, defendants are given the opportunity to volunteer to pay for an environmentally beneficial project in the affected area. The EPA encourages these projects especially in areas subject to environmental justice concerns, namely those characterized by a large share of minority and low-income households.

Campa and Muehlenbachs (2022) study the implications of using these projects in environmental enforcement cases in the US. The study reveals a large preference among the public for this “in-kind” form of penalty versus traditional fines, based on a survey of US residents. Moreover, a randomized survey experiment reveals that these environmental projects elevate the profile of the firm among the public as compared to a firm that only pays a fine, even when the penalties stem from the same violation. Similarly, the stock-market response to the announcement of these projects is positive, whereas announcing a settlement with a large penalty causes a drop in the stock-market price of the defendant. In terms of implications for environmental justice, the data analysis shows that the whitest and richest communities are the most likely to receive these projects, but the second largest share goes to communities where there are highest concentrations of minorities and low-income households.

Overall, the study finds that punishing firms through environmental projects can be beneficial for political economy reasons, given the large preference for this enforcement tool among the public and likely among firms, since firms seem to benefit from undertaking the projects. Moreover, while the targeting of environmental justice communities in the US is not perfect, tweaking the US arrangement could guarantee that the projects predominantly benefit those communities most harmed by environmental violations.

For EU adoption of environmental projects enforcement, a caveat is that the perception of these projects might be different among the public in the EU. Nonetheless, large-scale surveys modelled on those presented in Campa and Muehlenbachs (2022) can help in understanding public views in different regions. Moreover, the paper emphasizes that on the one hand, by benefiting defendants, the environmental projects might ultimately be a more lenient punishment than fines, with implications for deterrence and future environmental quality. On the other hand, environmental quality might also improve as a direct effect of the projects being implemented and due to improved monitoring in affected communities (Dimitri et al., 2006). Overall, the study finds that future environmental quality might be more likely to improve following fines rather than environmental projects. However, it cautions the reader on data limitations that causes the result to not be conclusive enough and calls for further research.

Conclusion

The persistence of environmental problems in the EU, as well as the striking differences in pollution levels across EU Member States, underscores the need for more and better environmental regulation. However, even in the presence of comprehensive and strict environmental rules, the protection of the environment is still inadequate if a proper enforcement mechanism is not in place. As observed in OECD (2009), proper enforcement ensures deterrence. Successful deterrence provides the best protection for the environment, while reducing the resources necessary to administer laws by addressing non-compliance before it occurs. EU institutions have recently taken important steps to improve and further harmonize enforcement of environmental regulation across Member States, with proposed updates to the existing Directive on the matter scheduled for Member-State discussion in upcoming months.

Specifically, the EU is seeking to step up the use of criminal law to prosecute environmental offenses across Member States, with mandatory penalties and increased cross-border coordination. We argue that the focus on criminal law has some drawbacks, which could be addressed by also harmonizing administrative enforcement across EU Member States. Researchers have previously argued that reliance on administrative law might increase the likelihood that offenses are investigated and prosecuted. We also present evidence from the use of administrative law in the US, where defendants in environmental cases can settle to pay part of their penalty “in-kind”, i.e. by performing environmental projects in areas affected by the alleged violations. The evidence suggests that the use of these projects is worth considering in other jurisdictions, including the EU, because they might be preferred by the public and could help addressing environmental justice concerns. An important caveat is that their implications for environmental protection are not clear, and more research should address this important aspect. On the subject, the existing evidence on environmental enforcement in the US, such as that presented in Campa and Muehlenbachs (2022), is established thanks to the availability of rich data sources kept by the US’ EPA. The EC’s recent proposal to systematically collect and disseminate data on environmental crimes is thus particularly welcome and should not be overlooked in the upcoming negotiations with Member States on the final content of the proposed Directive.

References

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

The Cost of Climate Change Policy: The Case of Coal Miners

20221010 The Cost of Climate Change Image 01

The phasing out of coal is considered a key component of the upcoming energy transition. While environmentally appealing, this measure will have a devastating effect on those working in the coal industry. Using the dissolution of the UK coal industry under Margret Thatcher as a natural experiment, we estimate the long run costs of being displaced as a coal miner. We find that within the first year of displacement, earnings fall by 80-90 percent, relative to the earnings of a carefully matched blue-collar manufacturing worker, while the wages of miners who find alternative employment fall by 40 percent. The losses are persistent and remain significant fifteen years after displacement. Our results are considerably above the estimates provided by other studies in the job displacement literature and may serve as a guide for policy makers when aiming for a just energy transition.

The Coal Mining Industry and Global Warming

According to the recent IPCC report, limiting global warming to 2 degrees Celsius requires a near complete and rapid elimination of coal in the global use of energy. Such a drastic measure is bound to have devastating effects on anybody economically linked to and dependent on the coal industry. Our back-of-the-envelope calculation suggests that the closure of the currently 2300 active industrial coal mines would translate into more than 5 million displaced coal miners. In Figure 1 we plot the spatial distribution of coal mines, indicating the locations of the upcoming displacements globally.

Figure 1. Location of industrial coal mines. The seven biggest producers and exporters of coal are marked in green.

Source: SNL Energy Data Set produced by S&P Global.

In a new paper (Rud et al., 2022), we estimate the average loss in the earnings of coal miners who have been displaced following one of the most notorious labor disputes of the 20th century: the dissolution of the coal sector in the UK. When Margaret Thatcher came into power many of the mines were unprofitable (Glyn, 1988). Considering the mines to be ripe for closures, the UK government publicly announced the closure of 20 mines in 1984. After additional information on further closures reached the press, the Union of Miners called for a general strike. The strike lasted for nearly a year and ended with a devastating defeat of the miners. From 1985 and onwards, the closure of mines proceeded at such an incredible pace that the dissolution of the UK coal industry is considered the most rapid in the history of the developed world (Beatty and Fothergill, 1996). As shown in Figure 2, the closures resulted in an equally rapid displacement of miners, from 250 000 employed miners in 1975 to less than 50 000 by 1995.

Figure 2. Coal Mining Employment in the UK 1975-2005

Note: The number on employed miners is collected from National Coal Board (1970-1993) and used in Aragon et al., (2018). The percent of employment shown on the right axis was calculated from the New Earnings Survey, the main data source used in this paper.

The Effects of UK Coal Mine Closures on Miners

At the heart of our empirical analysis is the New Earnings Survey, a longitudinal dataset covering 1 percent of the UK population since 1975. For the period 1979-1995 (marked in gray in Figure 2), among the 25-55 years old and those who were employed by the same mine for at least two consecutive years, we identify 2152 miners who experienced a final separation from a mine. In our baseline specification, these miners are matched to a single manufacturing worker using a large array of observables such as age, gender, hours worked, pre-separation employment and earnings, geographical administrative unit (county), as well as whether their respective wage was determined in a collective agreement. By the nature of the exercise we are unable to match on industry and instead match on detailed occupational information. A variety of other matching procedures suggest our results are robust.

In Figure 3 we plot the estimated differences in the evolution of earnings and wages for four years before, and fifteen years after displacement. The coefficients are estimated conditional on time and individual fixed effects. Due to the normalization of the dependent variable, the estimates should be interpreted as the percentage change relative to pre-displacement values. In Panel A of Figure 3 we show that hourly wages and weekly earnings conditional on employment drop by around 40 percent in the year after displacement and recover only slowly. It should be noted that the losses in earnings conditional on employment are not driven by changes in hours since the two series are close to identical.

In Panel B of Figure 3 we show the effect on earnings taking into account the losses of those who have not been successful in finding alternative employment in another industry. To get to these results we need to make some assumptions since the New Earnings Survey neither includes earnings information on the self-employed, nor on those who are active in the informal sector. Many other studies in the job displacement literature share similar data limitations, so we follow their approach in dealing with these. On the one hand, we assume zero individual earnings for periods without any observed labor earnings in the data, as assumed by Schmieder et al. (2022) and Bertheau et al. (2022). This assumption does not appear too strong since there is some evidence suggesting that ignoring the self-employed only marginally affects the results (Upward and Wright, 2017; Bertheau et al., 2022). On the other hand, we complement our results with an approach inspired by Jacobson (1993) where we keep only individuals who experience positive earnings within four years after displacement. The latter approach provides a more conservative estimate of displacement costs by assuming zero earnings only for individuals who eventually return to work.

Figure 3. The hourly wage and earnings conditional on employment (Panel A), and overall earnings costs of final displacement from a mine (Panel B).

Note: We plot the coefficients of the estimated panel data model with time and individual fixed effects and distributed leads and lags. ”Earnings: come back” refers to the treatment group where we only include those who have positive earnings at some point four years after job loss, and impute periods without employment as zeros. ”Earnings: all zeros” refers to the treatment in which we replace the earnings of any miner with a zero if the miner is not observed for any year, without restrictions.

Interpreting all periods of missing information as zeros, we find the initial losses to be around 90 percent of pre-displacement earnings within the first year after separation, while the more conservative estimates are only slightly lower at around 80 percent in the short run. In the long run, the losses are persistent and remain significantly depressed even fifteen years after displacement. Over the fifteen years after displacement these numbers amount to the miners losing on average between 4 to 6 times of their pre-displacement earnings. This implies that miners only receive 40-60 percent of the present discounted counterfactual earnings.

Our estimates are considerably above those provided by studies in the job displacement literature that focus on mass layoffs. Couch and Placzek (2010), for instance, report initial losses to amount to about 25-55 percent, while Schmeider et al. (2022) find initial earnings losses to be around 30-40 percent. Davis and Wachter (2012) estimate the long-run effects based on US data and find the present discounted earnings losses to be on average 1,7 times the workers’ pre-displacement earnings.

The large estimated individual costs to the displaced miners are likely due to a combination of at least two reasons. First, the complete collapse of the sector forces displaced miners to reallocate and search for another job in other industries, and likely other occupations. Since coal mining is a highly specialized occupation, this greatly reduces miners’ ability to transfer the accumulated human capital to another activity (Beatty and Fothergill, 1996; Samuel, 2016). Second, most coal miners are employed in remote and rural areas where mining is often the main employer, something which remains an issue for current miners around the world (see Figure 1). This feature reduces local economies’ capacity to absorb displaced miners after a mine closure and, due to the need to relocate, greatly increases workers’ job searching costs.

Conclusion

While it is important to globally transition away from the excessive use of fossil fuels, we should keep in mind the devastating effects such transition will end up having on some groups. And while coal miners are particularly vulnerable to the upcoming energy transition, the ramifications do not stop there. Individuals employed in industries linked to the coal industry are likely to also be affected by its dissolution. Moreover, individuals employed in industries providing local services, such as retail stores, restaurants and pubs are likely to experience a significant drop in demand. Thus, the impact of coal mine closures on coal dependent communities typically goes far beyond the displacement of miners (Aragon et al., 2018). The closure of mines will lead to spikes in local unemployment, often unregistered (“hidden”), as well as an exodus of the population. Estimating and accounting for these effects is important if we aim to provide a just energy transition for all.

Attempts have been made to foster economic recovery of affected communities. Regeneration policies have included re-training of local workers, support of small and medium-sized businesses, and investments in local infrastructure, among others. However, their success has been limited and former mining communities remain among the poorest in the UK (Beatty et al., 2007). Preparing a set of policies which will have the capacity to reduce the costs of the transition, as not to repeat the devastating experience of UK coal miners and their communities, is an important task ahead of current policy makers.

References

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

The Impact of Rising Gasoline Prices on Swedish Households – Is This Time Different?

Oil pumping jacks in sunset representing rising gasoline prices

The world is currently experiencing what can be labelled as a global energy crisis, with surging prices for oil, coal, and natural gas. For households in Sweden and abroad, this translates into higher gasoline and diesel prices at the pump as well as increased electricity and heating costs. The increase in energy-related costs began in 2021, as the world economy struggled with supply chain issues, and intensified as Russia invaded Ukraine at the end of February this year. In response, the Swedish government announced on March 14th this year that the tax rate on transport fuels would be temporarily reduced by 1.80 SEK per liter (€0.17) and that every car owner would receive a one-off lump-sum transfer of 1000 SEK in compensation (1500 SEK for car owners in rural areas). This reduction in transport fuel tax rates in Sweden is unprecedented. Since 1960, the nominal tax rate on gasoline has only been reduced three times – and then only by very small amounts, ranging from 0.04 to 0.22 SEK per liter. In this policy brief, we put the current gasoline price in Sweden into a historical context and answer two related questions: are Swedish households paying more today for gasoline than ever before? And should policymakers respond by reducing gasoline taxes?

The Price of Gasoline in Sweden

Sweden has a long history of using excise taxes on transport fuel as a means to raise revenue for the government and to correct for environmental externalities. As early as 1924, Sweden introduced an energy tax on the price of gasoline. Later in 1991, this tax was complemented by a carbon tax levied on the carbon content of transport fuels. On top of this, Sweden extended the coverage of its value-added tax (VAT) to include transport fuels in 1990. The VAT rate of 25 percent is applied to all components of the consumer price of gasoline: the production cost, producer margin, and excise taxes (energy and carbon taxes). Before the announced tax cut this year, the combined rate of the energy and carbon tax was 6.82 SEK per liter of gasoline. Adding the VAT that is applied on these taxes, amounting to 1.71 SEK, yields a total excise tax component of 8.53 SEK. This amount is fixed in the short run and does not vary with changes in the oil price.

Figure 1. Gasoline pump price: 2000-2022

Source: Monthly data on gasoline prices are provided by SPBI (2022).

Figure 1 shows the monthly average real price of gasoline in Sweden from 2000 to March of 2022. The price has increased over the last 20 years and is today historically high. Going back even further, the price is higher today than at any point since 1960. Swedish households are thus paying more for one liter of gasoline than ever before.

Figure 2. Gasoline expenditure per 100 km

Source: Trafikverket (2022).

However, a narrow focus on the price at the pump does not take into consideration other factors that affect the cost of personal transportation for households. First, the average fuel efficiency of the vehicle fleet has improved over time. New vehicles sold today in Sweden can drive 50 percent further on a liter of gasoline compared to new vehicles sold in 2000. Arguably, what consumers care about most is not the cost of one liter of gasoline per se but the cost of driving a certain distance – the utility we derive from a car is the distance we can travel. Accounting for the improvement over time in the fuel efficiency of new vehicles (Figure 2), we find that even though it is still comparatively expensive to drive today, the current price level no longer constitutes a historical peak. In fact, the cost of driving 100 km was as high, or higher, in the period from 2000-2008.

Second, any sensible discussion of the cost of personal transportation for households should also factor in changes in household income over time. The average real hourly wage has increased by close to 40 percent between 2000 and 2022. As such, the cost of driving 100 km, measured as a share of household income, has steadily gone down over time. Even more, this pattern is similar across the income distribution; for instance, the cost trajectory of the bottom decile group is similar to that of all employees. This is illustrated in Figure 3. In 1991, when the carbon tax was implemented, an average household had to spend around two-thirds of an hour’s wage to be able to drive a distance of 100 km. By 2020, that same household only had to spend one-third of an hour’s wage to drive the same distance. There is an increase in the cost of driving over the last two years but it is still cheaper today to drive a certain distance, in relation to income, compared to any year before 2012.

Taken all of this together, we have seen that over time, vehicles use fuel more efficiently on the expenditure side, and households earn higher wages on the income side. Based on this, we can conclude that the cost of travelling a certain distance by car is not historically high today. On the contrary, when measured as a share of income, it was 50 percent more expensive for most of the 21st century.

Figure 3. Cost of driving as a share of income

Source: Data on average hourly real wages are provided by Statistics Sweden (2022).

Response From Policymakers

It is, however, of little comfort for households to know that it was more expensive to drive their car – as a share of income – 10 or 20 years ago. We argue that what ultimately matters for the household is the short run change in cost – and the speed of this change. If the cost rises too fast, households cannot adjust their expenditure pattern quickly enough and thus feel that the price increase is unaffordable. And the change in the gasoline price at the pump has been unusually rapid over the last 12 months. From the beginning of 2021 until March of 2022, the pump price has risen by around 50 percent.

So, should policymakers respond by lowering gasoline taxes? The possibly surprising answer is that lowering existing gasoline tax rates would be counter-productive in the medium and long run. Since excise taxes are fixed and do not vary with the oil price, they reduce the volatility of the pump price by cushioning fluctuations in the market price of crude oil. The total excise tax component including VAT constitutes more than half of the pump price in Sweden, a level that is similar across most European countries. This stands in stark contrast with the US, where excise taxes only make up around 15 percent of the consumer price of gasoline. As a consequence, a doubling of the price of crude oil only increases the consumer price of gasoline in Sweden by around 35 percent, but in the US by around 80 percent. Furthermore, households across Sweden, Europe, and the US have adapted to the different levels of gasoline tax rates by purchasing vehicles with different levels of fuel efficiency. New light-duty vehicles sold in Europe are on average 45 percent more fuel-efficient compared to the same vehicle category sold in the US (IEA 2021). As such, US households do not necessarily benefit from lower gasoline taxation in terms of household expenditure on transport fuel and are even more vulnerable to rapid increases in the price of crude oil. Having high gasoline tax rates thus reduces – and not increases – the short run welfare impact on households. Hence, policymakers should resist the temptation to lower gasoline tax rates even during the current energy crisis. In the medium and long run, households would buy vehicles with higher fuel consumption and would be more exposed to price surges in the future, again compelling policymakers to adjust tax rates and creating a downward spiral. Instead, alternative measures should be considered to alleviate the effects of heavy price pressure on low-income households – for instance, revenue recycling of the carbon tax revenue and increased subsidies for public transport.

Conclusion

To reach environmental and climate goals, Sweden urgently needs to phase out the use of fossil fuels in the transport sector, which is Sweden’s largest source of carbon dioxide emissions. This is exactly what a gradual increase of the tax rate on gasoline and diesel would achieve. At the same time, it would benefit consumers by shielding them from the adverse effects of future oil price volatility.

The most common response from policymakers goes in the opposite direction. In Sweden, the Social Democrats – the governing party – have announced a tax cut on gasoline and diesel of 1.80 SEK per liter but the political parties in opposition have promised even larger tax cuts. Some proposals would even effectively abolish the entire energy and carbon tax on gasoline. Similar tax cuts have been announced for example in Belgium, France, the Netherlands, and Germany. Therefore, this time is indeed different – but in terms of the exceptional reactions from policymakers rather than in terms of the cost of gasoline that households face.

References

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Environmental Policy in Eastern Europe | SITE Development Day 2021

20210517 Carbon Tax Regressivity FREE Network Image 06

The need for urgent climate action and energy transformation away from fossil fuels is widely acknowledged. Yet, current country plans for emission reductions do not reach the requirements to contain global warming under 2°C. What is worse, there is even reasonable doubt about the commitment to said plans given recent history and existing future investment plans into fossil fuel extraction and infrastructure development.  This policy brief shortly summarizes the presentations and discussions at the SITE Development Day Conference, held on December 8, 2021, focusing on climate change policies and the challenge of a green energy transition in Eastern Europe.

Climate Policy in Russia

The first section of the conference was devoted to environmental policy in Russia. As Russia is one of the largest exporters of fossil fuel in the world, its policies carry particular importance in the context of global warming.

The head of climate and green energy at the Center for Strategic Research in Moscow, Irina Pominova, gave an account of Russia’s current situation and trends. Similar to all former Soviet Union countries, as seen in Figure 1, Russia had a sharp decrease in greenhouse gas emissions (hereinafter referred to as GHG emissions) during the early 90s due to the dramatic drop in production following the collapse of the Soviet Union. Since then, the level has stabilized, and today Russia contributes to about 5% of the total GHG emissions globally. The primary source of GHG emissions in Russia comes from the energy sector, mainly natural gas but also oil and coal. The abundance of fossil fuels has also hampered investments in renewable resources, constituting only about 3% of the energy balance, compared to the global average of 10%

Figure 1. Annual greenhouse gas emissions per capita

Note: Greenhouse gas emissions are expressed in metric tons of CO2 equivalents. Source: Emissions Database for Global Atmospheric Research (EDGAR).

Pominova noted that it is a massive challenge for the country to reach global energy transformation targets since the energy sector accounts for over 20% of national GDP and 28% of the federal budget. Yet, on a positive note, the number of enacted climate policies has accelerated since Russia signed the Paris Agreement in 2019. One notable example is the federal law on the limitation of GHG emissions. This law will be enforced from the end of 2021 and will impose reporting requirements for the country’s largest emitters. The country’s current national climate target for 2030 is to decrease GHG emissions by 30% compared to the 1990 level. As shown in Figure 1, this would imply roughly a 10 percent reduction from today’s levels given the substantial drop in emissions in the 1990’s.

Natalya Volchkova, Policy Director at CEFIR in Moscow, discussed energy intensity and the vital role it fills in Russia’s environmental transition. Energy intensity measures an economy’s energy efficiency and is defined as units of energy per unit of GDP produced. Volchkova emphasized that to facilitate growth in an environmentally sustainable way it is key to invest in technology that improves energy efficiency. Several regulatory policy tools are in place to promote such improvements like bottom-line energy efficiency requirements, sectoral regulation, and bans on energy-inefficient technologies. Yet, more is needed, and a system for codification and certification of the most environmentally friendly technologies is among further reforms under consideration.

As a Senior Program Manager at SIDA, Jan Johansson provided insights on this issue from an international perspective. Johansson gave an overview of SIDA’s cooperation with Russia in supporting and promoting environmental and climate policies in the country. The main financial vehicle of Swedish support to Russia with respect to environmental policy has been a multilateral trust fund established in 2002 under the European Union (EU) Northern Dimension Environmental Partnership (NDEP). One of the primary objectives of the cooperation has been to improve the environment in the Baltic and Barents Seas Region of the Northern Dimension Area. Over 30 NDEP projects in Russia and Belarus have been approved for financing so far. Seventeen of those have been completed, and the vast majority have focused on improving the wastewater treatment sector.

Johansson also shed light on the differences that can exist between governments in their approach to environmental policy. For example, in the area of solid waste management, Russia prefers large-scale solutions such as landfills and ample sorting facilities. In Sweden and Western Europe, governments have a more holistic view founded on spreading awareness in the population, recycling, corporate responsibility, and sorting at the source.

Environmental Transition in Eastern Europe

In the second part of the conference environmental policies and energy transformation in several other countries in the region were discussed.

Norberto Pignatti, Associate Professor and Centre Director at ISET Policy Institute, talked about the potential for a sustainable energy sector and current environmental challenges in Georgia. The country is endowed with an abundance of rivers and sun exposure, making it a well-suited environment for establishing the production of renewable energy such as wind, solar, and hydro. As much as 95 % of domestic energy production comes from renewable sources. Yet, domestic energy production only accounts for 21% of the country’s total consumption, and 58% of imported energy comes from natural gas and 33% from coal. Furthermore, the capacity of renewable energy sources has declined over the last ten years, and particularly so for biofuel due to the mismanagement of forests. A notable obstacle Georgia faces in its environmental transition is attracting investors. Low transparency and inclusiveness from the government in discussions about environmental policy, along with inaccurate information from the media, has led to a low public willingness to pay for such projects. Apart from measures to overcome the challenges mentioned, the government is currently working on a plan to impose emission targets on specific sectors, invest in energy efficiency and infrastructure, and support the development of the renewable energy sector.

Like Georgia, Poland is a country where energy consumption is heavily reliant on imports and where coal, oil, and gas stand for most of the energy supply. On top of that, Poland faces significant challenges with air quality and smog and a carbon-intensive energy sector. On the positive end, Poland established a government-industry collaboration in September 2021, that recognizes offshore wind as the primary strategic direction of the energy transition in Poland. Pawel Wróbel, Founder and Managing Director of BalticWind.EU, explained that the impact of the partnership will be huge in terms of not only energy security but also job creation and smog mitigation. The plan implies the installation of 5.9 GW of offshore wind capacity by 2030 and 11GW by 2040. Wróbel also talked about the EU’s European Green Deal and its instrumental role in accelerating the energy transition in Poland. By combining EU-wide instruments with tailor-made approaches for each of the member states, the Deal targets a 55% reduction in GHG emissions by 2030 through decarbonization, energy efficiency, and expanding renewable energy generation. Michal Myck, Director of CenEA, highlighted the role of social acceptance in accelerating the much-needed energy transition in Poland. In particular, to build political support, there is a crucial need for designing carbon taxes in a way that ensures the protection of vulnerable households from high energy prices.

Adapting to the European Green Deal will also create challenges for countries outside of the EU, especially if a European Carbon Border Adjustment Mechanisms (CBAM) is put in place in 2026 as suggested. Two participants touched on this topic in the context of Belarus and Ukraine respectively. Yauheniya Shershunovic, researcher at BEROC, talked about her research on the economic implications of CBAM in Belarus. It is estimated that the introduction of CBAM can be equivalent to an additional import duty on Belarusian goods equal to 3.4-3.8% for inorganic chemicals and fertilizers, 6.7-13.7% for metals, and 6.5-6.6% for mineral products. Maxim Fedoseenko, Head of Strategic Projects at KSE, shared similar estimations for Ukraine, suggesting that the implementation of CBAM will lead to an annual loss of €396 million for Ukrainian businesses and a decrease in national GDP of 0.08% per year.

An example of Swedish support to strengthen environmental policies in Eastern Europe was presented by Bernardas Padegimas, Team Leader at the Environmental Policy and Strategy Team at the Stockholm Environment Institute. The BiH ESAP 2030+ project is supporting Bosnia and Herzegovina in preparing their environmental strategy. This task is made more challenging by the country’s unique political structure with two to some extent politically autonomous entities (and a district jointly administered by the two), and elites from the three different major ethnic groups having guaranteed a share of power. The project therefore aims to include a broad range of stakeholders in the process, organized into seven different working groups with 659 members on topics ranging from waste management to air quality, climate change and energy. The project also builds capacity in targeted government authorities, raises public awareness of environmental problems, and goes beyond just environmental objectives: mainstreaming gender equality, social equity and poverty reduction. The project is 80 percent finished and will produce a strategy and action plan for the different levels of governance in the country’s political system.  There is also a hope that this process can serve as a model for consensus building around important but at times contentious policy issues more generally in the country.

Public Opinion and Energy Security

Finally, Elena Paltseva, Associate Professor at SITE, and Chloé le Coq, Professor at the University of Paris II Panthéon-Asses (CRED), shared two joint studies relating to the green transition in Europe.

Recent research shows that individual behavioral change has a vital role to play in the fight against climate change, both directly and indirectly through changes in societal attitudes and policies motivated by role models. A precondition for this to happen is a broad public recognition of anthropogenic climate change and its consequences for the environment. The first presentation by Paltseva and Le Coq focused on public perceptions about climate change in Europe (see this FREE policy brief for a detailed account). Using survey data the study explores variation in climate risk perceptions between Western Europe, the non-EU part of Eastern Europe, and Eastern European countries that are EU members. The results show that those living in non-EU Eastern European countries are on average less concerned about climate change. The regional difference can partly be explained by low salience and informativeness of environmental issues in the public discourse in these countries. To support this explanation, they study the impact of extreme weather events on opinions on climate change with the rationale that people who are more aware of climate change risks are less likely to adjust their opinion after experiencing an extreme weather event. They find that the effect of extreme weather events is higher in countries with less independent media and fewer climate-related legislative efforts, suggesting that the political salience of the environment and the credibility of public messages affects individuals’ perceptions of climate change risks.

The second presentation concerned energy security in the EU, and the impact of the environmental transition. It was argued that natural gas will play an important role in Europe’s green transition for two reasons. First, since the transition implies a higher reliance on intermittent renewable energy sources, there will be an increased need for use of gas-fired power plants to strengthen the supply reliability. Second, the electrification of the economy along with the phasing out of coal, oil, and nuclear generation plants will increase the energy demand. Today, about 20% of EU’s electricity comes from natural gas and 90% of that gas comes from outside EU, with 43% coming from Russia. To emphasize what issues can arise when the EU relies heavily on external suppliers, the presentation discussed a Risky External Energy Supply Index (Le Coq and Paltseva, 2009) that considers the short-term impact of energy supply disruptions. This index assesses not only the importance of the energy type used by a country but also access to different energy suppliers (risk diversification). The index illustrates that natural gas is riskier than oil or coal since natural gas importers in the EU depend to a greater extent on a single or few suppliers. Another crucial component of the security of gas supplies arises from the fact that 77% of EU’s net gas imports arrive through pipelines, which creates an additional risk of transit. Here, the introduction of new gas transit routes (from already existing suppliers) may increase diversification and decrease risks to the countries having direct access to the new route. At the same time, countries that share other pipelines with countries that now have direct access may lose bargaining power vis-à-vis the gas supplier in question, as demand through those pipelines could fall. Le Coq illustrated this point applying the Transit Risk Index developed in Le Coq and Paltseva (2012) to the introduction of the North Stream 1 pipeline. She concluded that the green transition and associated increase in demand for natural gas is likely to be associated with higher reliance on large gas producers, such as Russia, and resulting in energy security risks and imbalance in the EU. One way to counteract this effect is to exercise EU’s buyer power vis-a-vis Russia within the EU common energy policy. While long discussed, this policy has not been fully implemented so far.

Concluding Remarks

This year’s SITE Development Day conference gave us an opportunity to highlight yet another key issue, not only for Eastern Europe, but for the whole world: global warming and energy transformation. Experts from across the region, and policymakers and scholars based in Sweden, offered their perspectives on the challenges that lie ahead, but also highlighted initiatives and investments hopefully leading the way towards a brighter future.

List of Participants

  • Chloé Le Coq, Professor of Economics at the University of Paris II Panthéon-Assas (CRED). Paris, France. Research Fellow at SITE.
  • Maxim Fedoseenko, Head of Strategic Projects at KSE Institute. Kyiv, Ukraine.
  • Jan Johansson, Senior Program Manager, SIDA. Stockholm, Sweden.
  • Michal Myck, Director of CenEA. Szczecin, Poland.
  • Bernardas Padegimas, Team Leader: Environmental Policy and Strategy, Stockholm Environmental Institute. Stockholm, Sweden.
  • Elena Paltseva, Associate Professor, SITE/SSE/NES. Stockholm, Sweden
  • Norberto Pignatti, Associate Professor of Policy at ISET-PI, and Head of the Energy and Environmental Policy Institute at ISET-PI. Tbisili, Georgia.
  • Irina Pominova, Head of Climatwe and Green Energy at the Center for Strategic Research. Moscow, Russia.
  • Yauheniya Shershunovic, Researcher at BEROC, Minsk, Belarus. PhD Candidate at the Center for Development Research (ZEF). Uni Bonn.
  • Natalya Volchkova, Policy Director at CEFIR, Assistant Professor at the New Economic School (NES). Moscow, Russia.
  • Pawel Wróbel, Founder and Managing Director of BalticWind.EU. Poland.
  • Julius Andersson, Researcher at SITE. Stockholm, Sweden.
  • Anders Olofsgård, Associate Professor and Deputy Director at SITE. Stockholm, Sweden.

Green Concerns and Salience of Environmental Issues in Eastern Europe

Flooded street in Germany representing climate change risk perceptions

Changes in individual behavior are an essential component of the planet’s effort to reduce carbon emissions. But such changes would not be possible without individuals acknowledging the threat of anthropogenic climate change. This brief discusses the climate change risk perceptions across Europe. We show that people in Eastern Europe are, on average, less concerned about climate change than those in Western Europe. Using detailed survey data, we find evidence that the personal experience of extreme weather events is a key driver of green concern, and even more so in the non-EU Eastern part of Europe. We argue that this association might be explained by the relatively low quality and informativeness of public messages concerning global warming in this part of Europe. If information is scarce or perceived as biased, personal experience will resonate more.

Introduction

Climate change is one of the main threats to humanity. Tackling it entails a combined effort from all parts of society, from regulatory changes and industries adopting new greener business models to consumers adjusting their behavior. While an individual’s contribution to climate change may appear insignificant, research shows that the aggregate effect of mobilizing already known changes in consumer behavior may allow the European Union (EU) to reduce its carbon footprint by about 25% (Moran et al., 2020).

However, the first step for people to adjust their consumption patterns is to acknowledge the threat of anthropogenic climate change. Public ignorance about climate change’s impacts remains high across the world. Furthermore, citizens of more polluting countries are often relatively less concerned about climate change. This lack of awareness is not well-understood, in part due to the multi-dimensional local factors affecting it (Farrell et al., 2019).

This brief discusses the potential drivers of climate risk perceptions, focusing on the differences between Western Europe, Eastern European states that are part of the EU, and non-EU Eastern European countries. We first present the climate change concerns across these regions. We then discuss to which extent the country’s pollution exposure measures and individuals’ socio-economic characteristics can explain these differences. We show that the personal experience of extreme weather events is a key driver of green concern, and even more so in the non-EU part of Eastern Europe. We relate this result to the relatively low salience and informativeness of public messages concerning climate in this part of Europe and discuss potential policy implications.

Green Concerns and Pollution Exposure Across Europe

Figure 1 compares, across Europe, the share of poll respondents who see climate change as a major threat, based on the data from the Lloyd’s Register Foundation World Risk Poll 2020.  While there is a significant variation in climate risk perception within each region, respondents in Eastern Europe are, on average, less concerned about climate change than those in Western Europe. We observe a similar pattern between the EU and non-EU parts of Eastern Europe. 

Exposure to pollution does not seem to clearly explain these differences. Moreover, the patterns of correlation between climate concern and pollution differ across regions and measures of pollution exposure. The left panel of Figure 2 presents averages across the regions for two pollution measures: carbon emissions (which is, perhaps, reflecting climate threat in general) and air quality (which is more directly associated with health risks). We can see that CO2 emissions are the highest in the non-EU part of Eastern Europe, the least environmentally concerned region. Still, the EU part of Eastern Europe has the lowest average emissions per capita across the three regions (this ranking likely results from the interaction between reliance on fossil fuels, industrial structure, and level of development across the three regions). At the same time, when it comes to the average air quality (measured as the percentage of population exposed to at least 10 micrograms of PM2.5/m3), the non-EU EasternEuropean region is doing better than its EU counterpart, which is more climate concerned. Here, better average air quality in the non-EU Eastern European region is due to its relatively low population density, and consequently, low PM2.5 exposure in large parts of Russia. (See, more on the air quality gap within the EU in Lehne, 2021).

Figure 1: Climate concerns in Eastern and Western Europe

Source: Authors’ calculations based on Lloyd’s Register Foundation World Risk Poll 2020, question 5 “Do you think that climate change is a very serious threat, a somewhat serious threat, or not a threat at all to the people in this country in the next 20 years?”. Averages are calculated with population-representative weights.

The right panel of Figure 2 shows correlations between (country-level) climate concerns and pollution. For CO2, the correlation is negative in all three regions, suggesting that, within each region, more emitting countries are less concerned. This negative correlation, however, is the strongest in the EU-part of Eastern Europe and almost absent in the non-EU part. The differences between the regions are even more striking for the correlation between climate concerns and air quality: both in Western Europe and in the EU part of Eastern Europe, citizens of countries with worse air quality are more concerned about climate change. However, in non-EU Eastern Europe, the relation is the exact opposite: lower concerns about climate change go hand-in-hand with worse quality of air.

Figure 2: Emissions vs. Climate concerns in Eastern and Western Europe, 2018

Source: Authors’ calculations based on www.climatewatchdata.org, OECD and World Risk Poll 2020. The climate concern variable is a country-level weighted average of answers “Very high risk” to the World Risk Poll 2020 question 5, see note to Figure 1.

Green Concerns and Socio-economic Characteristics

Lower climate concerns in EU-part of the Eastern bloc have been documented before; they are often explained by the Eastern-European economies’ high reliance on coal and other fossil fuels, low-income levels, and other immediate problems that lower the priority of climate issues (e.g., Lorenzoni and Pidgeon 2006, Poortinga et al., 2018, or Marquart-Pyatt et al., 2019). Additionally, the literature suggests that climate beliefs are linked to individuals’ socio-economic characteristics, such as level of education, income, or gender (see, e.g., Poortinga, 2019), which may be different across the regions.

However, the regional differences in climate beliefs also persist when we use individual-level data and control for respondents’ individual characteristics, as well as for country-level variables, such as GDP per capita, oil, gas, and coal dependence of the economies, and exposure to emissions (at the country level, as our individual data does not have this information). This is illustrated in Column 1 of Table 1.

Table 1: Climate change beliefs determinants, individual-level cross-section data.

Source: This is an outcome of logistic regression. Experience =1 if the respondent answered “yes” to the World Risk Poll 2020 question L8D “Have you or someone you personally know, experienced serious harm from severe weather events, such as floods or violent storms in the past TWO years?” Media Freedom is based on 2018 Freedom House data, and scores media between 0 (worst) and 4 (best). Controls include age, gender, education, personal feelings about household income, income quantile, urban/rural, size of household, number of children under 15, las well as log of GDP per capita, log of CO2 per capita, mean exposure to PM2.5, and oil, gas and coal rents as a share of GDP. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

In what follows, we explore another key driver, the personal experience of extreme weather events. While there is a sizable literature on the effect of experience on climate beliefs, that factor was never, to our knowledge, considered to understand the difference in climate risk perception between the EU- and non-EU parts of Eastern Europe.  

Green Concern and Salience of Environmental Issues

In line with the recent climate risk perceptions literature (e.g., Van der Linden, 2015), we show that personal experience increases the likelihood of considering climate change as a major threat across all three regions (see column 2 in Table 1). The association is stronger in the EU part of Eastern Europe and even more so in the non-EU part (even if the difference between the last two is not statistically significant). This finding is confirmed when we control for (observable and unobservable) country-specific effects, such as social norms, via the inclusion of country-level fixed effects. In this case, extreme weather events make respondents more climate-conscious within each country (Column 3 of Table 1). In this specification, the effect differs statistically between the two groups of Eastern-European countries, even if only at a 10% significance level. To put it differently, the impact of personal experience with extreme weather events seems to close a sizable part of the gap in climate risk perceptions across the regions and more so in the non-EU part of Eastern Europe.

Our preferred explanation for this finding is that personal experience resonates with the quality and informativeness of public messages concerning global warming. If information is scarce or perceived as biased, personal experience will resonate more. The low political salience of environmental issues in Eastern Europe, inherited from its Soviet past (McCright, 2015), and lower media quality in Eastern Europe (see e.g., Zuang, 2021) are likely to affect the quality of public discourse concerning the risks of climate change, and, consequently, the information available to individuals.

The climate-related legislative effort across Eastern Europe reflects the low political importance of climate change in the region. According to the data from Grantham Research Institute on Climate Change and the Environment, non-EU transition countries, on average, have adopted 8 climate-related laws and policies, while the corresponding figure is 11.5 for EU transition countries and 18 for the countries in Western Europe. Further, Figure 3 shows a positive correlation between climate change concerns and the number of climate-related laws for Western Europe and the EU-part of Eastern Europe but a negative one for the non-EU part of Eastern Europe and Caucasus countries. One possible interpretation of these differences is that climate change is relatively low on the political agenda of (populist) regimes in the non-EU part of Eastern Europe, as climate-related legislative activity (proxied by, admittedly rough, a measure of the number of laws) does not reflect the intensity of population climate preferences.

Figure 3: Climate concern vs. Climate legislation

Source: Authors’ calculations based on climate legislation data from Grantham Research Institute on Climate Change and the Environment, and World Risk Poll 2020

Regarding the influence of media quality, column (4) of Table 1 shows that the effect of personal experience on climate change concern is negatively correlated with media freedom. One interpretation could be that individuals in countries with freer media infer less from their extreme weather experience because more accurate media coverage about climate risks improves the population’s knowledge on the issue.

Of course, the causality of the climate belief-experience relationship could also go in the other direction – people who are more concerned about climate change could be more likely to interpret their personal experience as weather-related extreme events. It is impossible to distinguish with the data at hand. However, Myers et al. (2013) show that both channels are present in the US, and the former channel dominates for the people less engaged in the climate issue. Stretching this finding to the Eastern Europe case, we argue that more precise information on the importance of climate change may partially have the same effect as experience – i.e., it will increase people’s awareness and concern about the consequences of global warming.

Conclusion

This brief addresses the differences in climate change beliefs between Eastern and Western Europe, as well as within Eastern Europe. It discusses the determinants of these differences and stresses the importance of personal experience, especially in the non-EU part of Eastern Europe. It relates this finding to the relatively low accuracy of information and quality of public discourse about climate change in the region.

We know already that tackling climate change requires reliable and accurate sources of information. This is especially crucial given what we outline in this brief. This issue resonates with the current social science analysis of the diffusion of climate change denial (see e.g., Farell et al., 2019, on the significant organized effort in spreading misinformation about climate change). Such contrarian information that relays uncertainty and doubt regarding the severity of the global climate change threat could have a severe impact, especially in situations with low political salience of climate change, like in non-EU Eastern Europe. A significant effort of both governments and civil society is needed to provide adequate information and mobilize the population in our common fight against climate change.

References

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Carbon Tax Regressivity and Income Inequality

20210517 Carbon Tax Regressivity FREE Network Image 01

A common presumption in economics is that a carbon tax is regressive – that the tax disproportionately burdens low-income households. However, this presumption originates from early research on carbon taxes that used US data, and little is known about the factors that determine the level of regressivity of carbon taxation across countries. In this policy brief, I explore how differences in income inequality may determine the distribution of carbon tax burden across households in Europe. The results indicate that carbon taxation will be regressive in high-income countries with relatively high levels of inequality, but closer to proportional in middle- and low-income countries and in countries with low levels of income inequality.

Introduction

Climate change is one of the main challenges facing us today. To reduce emissions of greenhouse gases, and thereby mitigate climate change, economists recommend the use of a carbon tax. The environmental and economic efficiency of carbon taxation is often highlighted, but the equity story is also of importance: who bears the burden of the tax?

How the burden from a carbon tax is shared across households is important since it affects the political acceptability of the tax. For instance, the “Yellow Vests” protests against the French carbon tax started due to concerns that the tax burden is disproportionately large on middle- and working-class households. Research in economics also shows that people prefer a progressive carbon tax (Brännlund and Persson, 2012).   

In this brief, I explore what we know about the distributional effects of carbon taxes and analyze the link between carbon tax regressivity and levels of income inequality in theory and in application to Sweden as well as other European countries.

Carbon Tax Burden Across Households

It is a common finding in the economics literature that carbon taxes are, or would be, regressive (Hassett et al., 2008; Grainger and Kolstad, 2010). However, most of the earlier literature is based on US data, and the US is unrepresentative of an average high-income country in terms of variables that are arguably important for carbon tax incidence. Compared to most countries in Europe, income in the US is high but unequally distributed, carbon dioxide emissions per capita are high, the gasoline tax rate is low, and the access to public transport is poor. If we want to understand the likely distributional effects of carbon taxes across Europe, we thus need to look beyond the US studies.

A recent study by Feindt et al. (2020) examines the consumer tax burden from a hypothetical EU-wide carbon tax. They find that the distributional effect at the EU-level is regressive, driven by the high carbon intensity of energy consumption in relatively low-income countries in Eastern Europe. At the national level, however, carbon taxation in Eastern European countries is slightly progressive due to car ownership and transport fuel being luxuries. Conversely, in high-income countries – where transport fuel is a necessity – carbon taxation is slightly regressive.

That the incidence of carbon and gasoline taxation varies across countries with different levels of income, has been found in numerous studies (Sterner, 2012; Sager, 2019). To understand the source of this variation, we need to identify the determinants of the incidence of carbon taxes.

The Role of Income Inequality

In a recent paper, I, together with Giles Atkinson at the London School of Economics, present a simple model where the variation in the carbon tax burden across countries and time can be determined by two parameters: the level of income inequality and the income elasticity of demand for the taxed goods (Andersson and Atkinson, 2020). The income elasticity specifies how the demand for a good, such as gasoline, responds to a change in income. If the budget share decreases as income increase, we refer to gasoline as a necessity. If the budget share increases with income, we refer to gasoline as a luxury good. Our model predicts that rising inequality increases the regressivity of a carbon tax on necessities. Similarly, we will see a more progressive incidence if inequality increases and the taxed good is a luxury.

To mitigate climate change, a carbon tax should be applied to goods responsible for the majority of greenhouse gas emissions: transport fuel, electricity, heating, and food. To estimate the distribution of carbon tax burden, we must then first establish if these goods are necessities or luxuries, respectively. Gasoline is typically found to be a luxury good in low-income countries but a necessity in high-income countries (Dahl, 2012). Food, in the aggregate, is consistently found to be a necessity. A carbon tax on food would, however, mainly increase the price of red meat – beef has a magnitude larger carbon footprint than all other food groups – and red meat is generally a luxury good, even in high-income countries (Gallet, 2010). Lastly, electricity and heating are necessities, with little variation across countries in the level of income elasticities.  A broad carbon tax would thus likely be regressive in high-income countries, but more proportional, maybe even progressive, in low-income countries. The overall effect in low-income countries depends on the relative budget shares of transport fuel and meat (luxuries) versus electricity and heating (necessities). A narrow carbon tax on transport fuel has a less ambiguous incidence: it will be regressive in high-income countries where the good is a necessity and proportional to progressive in low-income countries where the good is a luxury.  

The income elasticities of demand, however, only provide half of the picture. To understand the degree of regressivity from carbon taxation, we also need to take into account the level of income inequality in a country. Our model predicts that a carbon tax on necessities will be more regressive in countries with relatively high levels of inequality. And increases in inequality over time may turn a proportional tax incidence into a regressive one.

To test our model’s prediction, we analyze the distributional effects of the Swedish carbon tax on transport fuel and examine previous studies of gasoline tax incidence across high-income countries. 

Empirical Evidence from Sweden

The Swedish carbon tax was implemented in 1991 at $30 per ton of carbon dioxide and the rate was subsequently increased rather rapidly between 2000-2004. Today, in 2021, the rate is above $130 per ton; the world’s highest carbon tax rate imposed on households. The full tax rate is mainly applied to transport fuel, with around 90 percent of the revenue today coming from gasoline and diesel consumption.

 Figure 1. Carbon tax incidence and income inequality in Sweden

Sources: Andersson and Atkinson (2020). Gini coefficients are provided by Statistics Sweden.

Using household-level data on transport fuel expenditures and annual income between 1999-2012, we find that the Swedish carbon tax is increasingly regressive over time, which is highly correlated with an increase in income inequality. Figure 1 shows the strong linear correlation between the incidence of the tax and the level of inequality across our sample period. The progressivity of the tax is measured using the Suits index (Suits, 1977), a summary measure of tax incidence that spans from +1 to -1. Positive (negative) numbers indicate that the tax is overall progressive (regressive) and a proportional tax is given an index of zero. The level of income inequality, in turn, is summarized by the Gini coefficient (0-100), with higher numbers indicating higher levels of inequality.

In 1991, when the Swedish carbon tax was implemented, income inequality was relatively low, with a Gini of 20.8. If we extrapolate, the results presented in Figure 1 indicate that the tax incidence in 1991 was proportional to slightly progressive. Since the early 1990s, however, Sweden has experienced a rise in inequality. Today, the Gini is around 28 and the carbon tax incidence is rather regressive. This can be a potential concern if people start to perceive the distribution of the tax burden as unfair and call for reductions in the tax rate.

Empirical Evidence Across High-Income Countries

Figure 2 presents the results of our analysis of previous studies of gasoline tax incidence across high-income countries. Again, we find a strong correlation with inequality; the higher the level of inequality, the more regressive are gasoline taxes.  In the bottom-right corner, we locate the results from studies on gasoline tax incidence that have used US data. The level of inequality in the US has been persistently high, and the widespread assumption that gasoline and carbon taxation is regressive is thus based to a large part on studies of one highly unequal country. Looking across Europe we find that the tax incidence is more varied, with close to a proportional outcome in the (relatively equal) Nordic countries of Denmark and Sweden.

Figure 2. Gasoline tax incidence and income inequality in OECD countries

Sources: Andersson and Atkinson (2020). Gini coefficients are from the SWIID database (Solt, 2019).

Conclusion

A carbon tax is economists’ preferred instrument to tackle climate change, but its distributional effect may undermine the political acceptability of the tax. This brief shows that to understand the likely distributional effects of carbon taxation we need to take into account the type of goods that are taxed – necessities or luxuries – and the level and direction of income inequality. Carbon taxation will be closer to proportional in European countries with low levels of inequality, whereas in countries with relatively high levels of inequality the carbon tax incidence will be regressive on necessities and progressive for luxury goods.

This insight may explain why we first saw the introduction of carbon taxes in the Nordic countries. Finland, Sweden, Denmark, and Norway all implemented carbon taxes between 1990-1992, and income inequality was relatively, and historically, low in this region at the time. Policymakers in the Nordic countries thus didn’t need to worry about possibly regressive effects. Looking across Europe today, many of the countries that have relatively low levels of inequality have either already implemented carbon taxes or, due to the size of their economies, have a low share of global emissions. In countries that are responsible for a larger share of global emissions – such as, the UK, Germany, and France – inequality is relatively high, and they may find it to be politically more difficult to implement carbon pricing as the equity argument becomes more salient and provides opportunities for opponents to attack the tax.

To increase the political acceptability and perceived fairness of carbon pricing, policymakers in Europe should consider a policy design that offsets regressive effects by returning the revenue back to households, either by lump-sum transfers or by reducing tax rates on labor income.   

References

  • Andersson, Julius and Giles Atkinson. 2020. “The Distributional Effects of a Carbon Tax: The Role of Income Inequality.” Grantham Research Institute on Climate Change and the Environment Working Paper 349. London School of Economics.  
  • Brännlund, Runar and Lars Persson. 2012. “To tax, or not to tax: preferences for climate policy attributes.” Climate Policy 12 (6): 704-721.
  • Dahl, Carol A. 2012. “Measuring global gasoline and diesel price and income elasticities.” Energy Policy 41: 2-13.
  • Feindt, Simon, et al. 2020. “Understanding Regressivity: Challenges and Opportunities of European Carbon Pricing.” SSRN 3703833.
  • Gallet, Craig A. 2010. “The income elasticity of meat: a meta-analysis.” Australian Journal of Agricultural and Resource Economics 54(4): 477-490.
  • Grainger, Corbett A and Charles D Kolstad. 2010. “Who pays a price on carbon?” Environmental and Resource Economics 46(3): 359-376.  
  • Hassett, Kevin A, Aparna Mathur, and Gilbert E Metcalf. 2009. “The consumer burden of a carbon tax on gasoline.” American Enterprise Institute, Working Paper.
  • Sager, Lutz. 2019. “The global consumer incidence of carbon pricing: evidence from trade.” Grantham Research Institute on Climate Change and the Environment Working Paper 320. London School of Economics.  
  • Thomas, Sterner. 2012. Fuel taxes and the poor: the distributional effects of gasoline taxation and their implications for climate policy. Routledge.
  • Suits, Daniel B. 1977. “Measurement of tax progressivity.” American Economic Review 67(4): 747-752.

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Energy Storage: Opportunities and Challenges

Wind turbines in a sunny desert representing energy storage

As the dramatic consequences of climate change are starting to unfold, addressing the intermittency of low-carbon energy sources, such as solar and wind, is crucial. The obvious solution to intermittency is energy storage. However, its constraints and implications are far from trivial. Developing and facilitating energy storage is associated with technological difficulties as well as economic and regulatory problems that need to be addressed to spur investments and foster competition. With these issues in mind, the annual Energy Talk, organized by the Stockholm Institute of Transition Economics, invited three experts to discuss the challenges and opportunities of energy storage.

Introduction

The intermittency of renewable energy sources poses one of the main challenges in the race against climate change. As the balance between electricity supply and demand must be maintained at all times, a critical step in decarbonizing the global energy sector is to enhance energy storage capacity to compensate for intermittent renewables.

Storage systems create opportunities for new entrants as well as established players in the wind and solar industry. But they also present challenges, particularly in terms of investment and economic impact.

Transitioning towards renewables, adopting green technologies, and developing energy storage can be particularly difficult for emerging economies. Some countries may be forced to clean a carbon-intensive power sector at the expense of economic progress.

The 2021 edition of Energy Talk – an annual seminar organized by the Stockholm Institute of Transition Economics – invited three international experts to discuss the challenges and opportunities of energy storage from a variety of academic and regulatory perspectives. This brief summarizes the main points of the discussion.

A TSO’s Perspective

Niclas Damsgaard, the Chief strategist at Svenska kraftnät, gave a brief overview of the situation from a transmission system operator’s (TSO’s) viewpoint. He highlighted several reasons for a faster, larger-scale, and more variable development of energy storage. For starters, the green transition implies that we are moving towards a power system that requires the supply of electricity to follow the demand to a much larger extent. The fact that the availability of renewable energy is not constant over time makes it crucial to save power when the need for electricity is low and discharge it when demand is high. However, the development and facilitation of energy storage will not happen overnight, and substantial measures on the demand side are also needed to ensure a more dynamic energy system. Indeed, Damsgaard emphasized that demand flexibility constitutes a necessary element in the current decarbonization process. However, with the long-run electrification of the economy (particularly driven by the transition of the transport industry), extensive energy storage will be a necessary complement to demand flexibility.

It is worth mentioning that such electrification is likely to create not only adaptation challenges but also opportunities for the energy systems. For example, the current dramatic decrease in battery costs (around 90% between 2010 and 2020) is, to a significant extent, associated with an increased adoption of electric vehicles.

However, even such a drastic decline in prices may still fall short of fully facilitating the new realities of the fast-changing energy sector. One of the new challenges is the possibility to store energy for extended periods of time, for example, to benefit from the differences in energy demand across months or seasons. Lithium-ion batteries, the dominant battery technology today, work well to store for a few hours or days, but not for longer storage, as such batteries self-discharge over time. Hence, to ensure sufficient long-term storage, more batteries would be needed and the associated cost would be too high, despite the above-mentioned price decrease. Alternative technological solutions may be necessary to resolve this problem.

Energy Storage and Market Structure

As emphasized above, energy storage facilitates the integration of renewables into the power market, reduces the overall cost of generating electricity, and limits carbon-based backup capacities required for the security of supply, creating massive gains for society. However, because the technological costs are still high, it is unclear whether the current economic environment will induce efficient storage. In particular, does the market provide optimal incentives for investment, or is there a need for regulations to ensure this?

Natalia Fabra, Professor of Economics and Head of EnergyEcoLab at Universidad Carlos III de Madrid, shared insights from her (and co-author’s) recent paper that addresses these questions. The paper studies how firms’ incentives to operate and invest in energy storage change when firms in storage and/or production have market power.

Fabra argued that storage pricing depends on how decisions about the storage investment and generation are allocated between the regulator and the firms operating in the storage and generation markets. Comparing different market structures, she showed as market power increases, the aggregate welfare and the consumer surplus decline. Still, even at the highest level of market concentration, an integrated storage-generation monopolist firm, society and consumers are better off than without energy storage.

Fabra’s model also predicts that market power is likely to result in inefficient storage investment.

If the storage market is competitive, firms maximize profits by storing energy when the prices are low and releasing when the prices are high. The free entry condition implies that there are investments in storage capacity as long as the marginal benefit of storage investment is higher than the marginal cost of adding an additional unit of storage. But this precisely reflects the societal gains from storage; so, the competitive market will replicate the regulator solution, and there are no investment distortions.

If there is market power in either generation or storage markets, or both, the investment is no longer efficient. Under market power in generation and perfectly competitive storage, power generating firms will have the incentive to supply less electricity when demand is high and thereby increase the price. As a result, the induced price volatility will inflate arbitrage profits for competitive storage firms, potentially leading to overinvestment.

If the model features a monopolist storage firm interacting with a perfectly competitive power generation market, the effect is reversed. The firm internalizes the price it either buys or sells energy, so profit maximization makes it buy and sell less energy than it would in a competitive market, in the exact same manner as the classical monopolist/monopsonist does. This underutilization of storage leads to underinvestment.

If the model considers a vertically integrated (VI) generation-storage firm with market power in both sectors, the incentives to invest are further weakened: the above-mentioned storage monopolist distortion is exacerbated as storage undermines profits from generation.

Using data on the Spanish electricity market, the study also demonstrated that investments in renewables and storage have a complementary relationship. While storage increases renewables’ profitability by reducing the energy wasted when the availability is excess, renewables increase arbitrage profits due to increased volatility in the price.

In summary, Fabra’s presentation highlighted that the benefits of storage depend significantly on the market power and the ownership structure of storage. Typically, market power in production leads to higher volatility in prices across demand levels; in turn, storage monopolist creates productive inefficiencies, two situations that ultimately translate into higher prices for consumers and a sub-optimal level of investment.

Governments aiming to facilitate the incentives to invest in the energy storage sector should therefore carefully consider the economic and regulatory context of their respective countries, while keeping in mind that an imperfect storage market is better than none at all.

The Russian Context

The last part of the event was devoted to the green transition and the energy storage issue in Eastern Europe, with a specific focus on Russia.

Alexey Khokhlov, Head of the Electric Power Sector at the Energy Center of Moscow School of Management, SKOLKOVO, gave context to Russia’s energy storage issues and prospects. While making up for 3% of global GDP, Russia stands for 10% of the worldwide energy production, which arguably makes it one of the major actors in the global power sector (Global and Russian Energy Outlook, 2016). The country has a unified power system (UPS) interconnected by seven regional facilities constituting 880 powerplants. The system is highly centralized and covers nearly the whole country except for more remote regions in the northeast of Russia, which rely on independent energy systems. The energy production of the UPS is strongly dominated by thermal (59.27%) followed by nuclear (20.60%), hydro (19.81%), wind (0.19%), and solar energy (0.13%). The corresponding ranking in capacity is similar to that of production, except the share of hydro-storage is almost twice as high as nuclear. The percentage of solar and wind of the total energy balance is insignificant

Despite the deterring factors mentioned above, Khokhlov described how the Russian energy sector is transitioning, though at a slow pace, from the traditional centralized carbon-based system towards renewables and distributed energy resources (DER). Specifically, the production of renewables has increased 12-fold over the last five years. The government is exploring the possibilities of expanding as well as integrating already existing (originally industrial) microgrids that generate, store, and load energy, independent from the main grid. These types of small-scaled facilities typically employ a mix of energy sources, although the ones currently installed in Russia are dominated by natural gas. A primary reason for utilizing such localized systems would be for Russia to improve the energy system efficiency. Conventional power systems require extra energy to transmit power across distances. Microgrids, along with other DER’s, do not only offer better opportunities to expand the production of renewables, but their ability to operate autonomously can also help mitigate the pressure on the main grid, reducing the risk for black-outs and raising the feasibility to meet large-scale electrification in the future.

Although decarbonization does not currently seem to be on the top of Russia’s priority list, their plans to decentralize the energy sector on top of the changes in global demand for fossil fuels opens up possibilities to establish a low-carbon energy sector with storage technologies. Russia is currently exploring different technological solutions to the latter. In particular, in 2021, Russia plans to unveil a state-of-the-art solid-mass gravity storage system in Novosibirisk. Other recently commissioned solutions include photovoltaic and hybrid powerplants with integrated energy storage.

Conclusion

There is no doubt that decarbonization of the global energy system, and the role of energy storage, are key in mitigating climate change. However, the webinar highlighted that the challenges of implementing and investing in storage are both vast and heterogenous. Adequate regulation and, potentially, further government involvement is needed to correctly shape incentives for the market participants and get the industry going.

On behalf of the Stockholm Institute of Transition Economics, we would like to thank Niclas Damsgaard, Natalia Fabra, and Alexey Khokhlov for participating in this year’s Energy TalkThe material presented at the webinar can be found here.

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Pollution and the COVID-19 Pandemic: Air Quality in Eastern Europe

Factory with chimney smoke representing air-quality Eastern Europe

The COVID-19 pandemic has drawn attention to a pre-existing threat to global health: the quality of air in cities around the world. Prolonged exposure to air pollution has been found to increase the mortality rate of COVID-19. This is a particular concern for much of Eastern Europe, where emissions regularly exceed safe levels. This policy brief analyses recent data on air quality in the region and the factors that explain a persistent East-West divide in pollution in Europe. It concludes by evaluating to what extent lockdowns in 2020 provided a temporary respite from pollution in the region. 

Introduction

The WHO estimates that air pollution causes seven million premature deaths every year (WHO 2018). COVID-19 has further amplified these health risks, as air pollution can increase both the chance of catching respiratory diseases and their severity. At the same time, the pandemic has resulted in lockdowns and a general slowdown in economic activity which are widely perceived as having led to a temporary improvement in air quality.

This brief provides an overview of recent trends in air quality in Eastern European cities using data from the World Air Quality Index. It addresses three questions:

  1. How did air pollution in Eastern Europe compare to Western Europe prior to the pandemic?
  2. What are the main sources of air pollution in Eastern European cities and can they be addressed by policymakers?
  3. Was there a significant improvement in air quality in 2020 as a result of COVID-19?

Air Pollution in Eastern Europe

Most measures of air quality in Europe show a stark East-West divide. Map 1 plots the share of days in 2019 where air pollution, as measured by PM 2.5 (fine particulate matter), exceeded levels classified as unhealthy for the general population. On average, cities to the east of the former Iron Curtain experienced over 100 such days, compared to an average of 20 days in Western Europe. These averages mask significant variation within both regions; Tallinn was among the best performing cities while Naples was among the worst.

Map 1

Source: Author’s calculations based on data from the World Air Quality Index COVID-19 dataset. Above the threshold AQI of 150, PM 2.5 levels are classified as unhealthy to the general population by the US EPA.

The gap in air quality between Eastern and Western Europe has been linked to differences in health outcomes for decades. Shortly after the fall of the Soviet Union, Bobak and Feachem (1995) found that air pollution accounted for a significant share of the Czech Republic and Poland’s mortality gap with respect to Western Europe. The European Environment Agency’s 2020 report provides estimates for ‘years of life lost’ attributable to different pollutants. Figure 1, which plots these estimates for PM 2.5, highlights the fact that Eastern European countries, in particular those in the Balkans, continue to experience significantly higher mortality related to pollution, as compared to their Western European counterparts.

Figure 1

Source: estimates from EEA Air Quality in Europe report 2020

Sources of Air Pollution

A number of factors contribute to the pattern of pollution shown on Map 1, not all of which are under policymakers’ direct control. For example, two of the cities on the map with the unhealthiest air – Sarajevo and Skopje – are surrounded by mountains that prevent emissions from dissipating.

In addition to immutable geographic factors, policies elsewhere may also be contributing to pollution in the region. Stricter regulations in Western Europe can have adverse effects if they result in polluting industries migrating eastwards. Bagayev and Lochard (2017) show that as EU countries adopt new air pollution regulations, the share of their imports from Eastern Europe and Central Asia in pollution-intensive sectors increases. Stricter rules can also result in outdated technology being exported to other countries. A Transport & Environment report found that over 30,000 high-emission diesel cars were exported from Western Europe to Bulgaria in 2017 and argued that such flows will continue as Western European cities impose Low Emission Zones and diesel bans (Transport & Environment 2018).

Power generation, and in particular coal power, is likely to be the single most important determinant of the gap in air quality between Eastern and Western European cities. Coal power accounts for over 60% of electricity production in Poland, Serbia, Bosnia Herzegovina, and North Macedonia, and remains an important energy source in the majority of Eastern European countries (BP 2020). Many of the coal power plants in the region have been operating for decades and are not equipped with modern desulphurisation technology that would help to reduce their emissions. A report by the Health and Environment Alliance found that 16 coal power plants in the Western Balkans collectively produce more emissions than the 250 power plants in the European Union, while only being able to generate 6% of the power (Matkovic Puljic et al. 2019).

Countries in the region are taking steps to reduce their dependence on coal power. In September 2020, the Polish government struck an agreement with labour unions that would see coal phased out by 2049. Coal accounts for 75% of Poland’s current electricity and Map 1 shows that air in the Upper Silesian Coal Basin, in the south of the country, is particularly polluted. Despite such commitments, Western European countries have in recent years been faster at transitioning away from coal. If this trend continues, the gap in air quality may even increase in the short run.

Did COVID-19 Improve Air Quality?

Last spring, a number of headlines from around the world featured the phrase “A breath of fresh air” (e.g. ReutersThe Economic Times, EUIdeas). These articles described measurable improvements in air quality in cities with government-mandated lockdowns. Recent academic publications have confirmed these reports in a variety of settings including the US (Berman and Ebisu 2020), China (Chen et al. 2020), and Korea (Ju et al. 2020).

While Eastern Europe was less affected by the initial wave of COVID-19 than Western Europe, most countries imposed lockdowns and social distancing measures that can be expected to have affected air quality. Figure 2 uses daily data from the World Air Quality Index for 221 European cities to compare average air pollution in 2020 to 2019. Overall, these plots suggest that air quality did improve in Eastern European cities relative to the previous year. However, not all types of pollutants declined and the declines are slightly smaller on average than in Western European cities. Panels A, B, and C plot air quality indices for fine particulate matter (PM 2.5), nitrogen dioxide (NO2), and sulfur dioxide (SO2) respectively. Dots below the line represent cities where the average air quality index was lower (indicating less pollution) in 2020 than in 2019. The declines are largest for NO2 – a gas that is formed when fuel is burned. The reduction in traffic and transportation in all European cities is likely to have contributed to this drop. By contrast, there were no statistically significant declines in SO2. This may be due to the fact that power generation, which is the source of most SO2 emissions, was less affected by lockdowns than transportation.

Figure 2

Panel A

Panel B

Panel C

Source: Author’s calculations based on the World Air Quality Index COVID-19 dataset. Each marker represents a city. Markers below the 45-degree line represent cities where emissions for the respective category of pollutant were lower in 2020 than in 2019. For reasons of presentation, outliers were excluded from panels B and C.

The variation in COVID-19 prevalence over the course of 2020 is visible when tracking pollution over time. Figure 3 shows that average daily NO2 emissions in Western European cities dropped most from March to June of 2020, during the first wave of the pandemic. NO2 levels were comparable to the previous year in July and August when case numbers fell and restrictions were lifted. In the last months of the year, as the second wave hit, NO2 emissions once more dropped below the previous year’s average. This pattern is similar for Eastern European cities but the decline in NO2 in the first half of the year is less pronounced.

Figure 3

Source: Author’s calculations based on the World Air Quality Index COVID-19 dataset. Lines show the seven day moving average of the ratio between average NO2 emissions in 2020 and 2019.

Conclusion

The COVID-19 epidemic has highlighted the health costs of air pollution. The preliminary evidence suggests that long-term exposure to pollution increased COVID-19 mortality rates (Cole et al. 2020, Wu et al. 2020). This is a particular concern for countries across Eastern Europe which – at the time of writing – are still grappling with the second wave of the pandemic in Europe. Many people in this region have been exposed to polluted air for decades.

The pandemic has also demonstrated that air quality can improve relatively quickly when human behaviour changes. The data described in this brief suggest that Eastern Europe was no exception in this regard, although the declines were confined to some categories of pollutants. Achieving a more general, and sustained improvement in air quality will require a shift from coal power towards cleaner forms of energy.

Stimulus packages aimed at a post-pandemic economic recovery can provide an opportunity for policy to reorient the economy and accelerate such a shift. The consultancy Vivid Economics, which rated G20 member countries’ proposed stimulus packages in terms of their environmental impact, found that the ‘greenest’ stimulus proposals are those of the European Commission, France, UK, and Germany. Russia is one of the worst performers on this index (Vivid Economics 2020). Whether governments in Eastern Europe are able to take advantage of this opportunity will depend on their respective fiscal space and whether they make improving air quality a priority.

References

  • Bagayev, Igor, and Julie Lochard, 2017. “EU air pollution regulation: A breath of fresh air for Eastern European polluting industries?.” Journal of Environmental Economics and Management 83: 145-163.
  • Berman, Jesse D., and Keita Ebisu. 2020 “Changes in US air pollution during the COVID-19 pandemic.” Science of the Total Environment 739: 139864.
  • BP 2020 “Statistical Review of World Energy – all data, 1965-2019
  • Bobak, Martin, and Richard GA Feachem. 1995. “Air pollution and mortality in central and eastern Europe: an estimate of the impact.” The European Journal of Public Health , no. 2: 82-86.
  • Cole, Matthew, Ceren Ozgen, and Eric Strobl, 2020. “Air pollution exposure and COVID-19.”.
  • Chen, Kai, Meng Wang, Conghong Huang, Patrick L. Kinney, and Paul T. Anastas, 2020. “Air pollution reduction and mortality benefit during the COVID-19 outbreak in China.” The Lancet Planetary Health 4, no. 6: e210-e212.
  • European Environment Agency 2020. “Air Quality in Europe – 2020 report“, EEA Report No 9/2020
  • Matkovic Puljic, V., D. Jones, C. Moore, L. Myllyvirta, R. Gierens, I. Kalaba, I. Ciuta, P. Gallop, and S. Risteska. 2019. “Chronic coal pollution–EU action on the Western Balkans will improve health and economies across Europe.” HEAL, CAN Europe, Sandbag, CEE Bankwatch Network and Europe Beyond Coal, Brussels.
  • Ju, Min Jae, Jaehyun Oh, and Yoon-Hyeong Choi. 2020. “Changes in air pollution levels after COVID-19 outbreak in Korea.” Science of The Total Environment 750: 141521.
  • Transport & Environment, 2018. “Briefing: Dirty diesels heading east
  • Vivid Economics, 2020. “Greenness of Stimulus Index” December 2020 update
  • World Air Quality Index, 2021. “Worldwide COVID-19 dataset
  • World Health Organization, 2018. “WHO Global Ambient Air Quality Database (update May 2018)”
  • Wu, Xiao, Rachel C. Nethery, Benjamin M. Sabath, Danielle Braun, and Francesca Dominici, 2020. “Exposure to air pollution and COVID-19 mortality in the United States.” medRxiv

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Circular Economy in Belarus: What Hinders the Transformation?

20201214 Circular Economy in Belarus FREE Network Policy Brief Image 02

The transition towards a circular economy has accelerated in response to increasing environmental challenges and the need for more sustainable and cleaner production. Many countries are mainstreaming a circular economy into their policy agenda. In particular, the European Commission’s new Circular Economy Action Plan, adopted in March 2020, will be a key element of the EU Industrial strategy. In Belarus, similar policy agendas that promote circular economy have not been developed yet, however, this concept is now attracting increasingly more attention. Therefore, it is essential to identify barriers that hamper the implementation of circular economy business practices in the country. This policy brief presents the results of a survey that studied 452 Belarusian companies and their prospects and opportunities of circular transformation both within enterprises and at the national level. The findings show that high levels of capital and technology spending and lack of state-provided economic incentives are the most pressing barriers to circular economy development in Belarus. When it comes to enterprises’ own prospects for circular transformation, lack of funding is ranked as the main impediment.

Barriers to Circular Economy Development in Belarus

Despite the fact that there has been an increased interest in the circular economy, evidence suggests that its implementation has been hampered by a variety of barriers. Based on academic literature and business case studies, these barriers can be categorized into several groups (Rizos, et al., 2015; Rizos, et al., 2016; Kirchherr et al., 2018; Ritzén and Sandström, 2017):

  • Cultural barriers (e.g. social, behavioral, and managerial) – a lack of interest, environmental awareness, and/or existing differences in personal values, which hinder the development of a circular economy.
  • Information constraints – a lack of consumer and producer awareness about the key principles and best practices of circular economy implementation;
  • Inadequate regulatory environment – a lack of consistent legal framework, policy support, and incentives for circular economy transition (e.g., through tax relief, fiscal measures, or public procurement);
  • Technological barriers – an absence of a well-managed logistic infrastructure for the collection, extraction, and processing of secondary raw materials (SRM); the lack of standardization and, as a result, lower quality of goods produced from SRM; the absence of knowledge on how circularity can be implemented in a particular industry;
  • Economic impediments – barriers to circular economy transition that are due to low prices for primary raw materials and high investment costs for the implementation of circular business models, as well as lack of funding and restricted access to finance.

This categorization served as the basis for the development of our questionnaire. We surveyed enterprises on the prospects and opportunities relating to their own circular transformation as well as factors constraining the more general development of a circular economy in Belarus. The survey was conducted in 2020 by BEROC and IBB Dortmund and included 452 companies from the Belarusian regions of Brest and Mogilev. The results show that businesses view economic, regulatory, and informational barriers as the most hindering to a circular transformation of Belarus. In particular, the respondents stated that the main impediments are high levels of capital and technology spending (62.8% of respondents), as well as lack of state-provided economic incentives (50.4%). Information constraints are also important as enterprises are not aware of circular technologies and believe that they do not exist (50.4%). Furthermore, there is a lack of knowledge on how to implement circularity in their industry (33.8%) (see Figure 1).

Figure 1. Barriers to circular economy development in Belarus, % of respondents

Source: Figure compiled by the authors based on the survey results.

Respondents also identified barriers that hamper a shift of their own enterprise – rather than that of the entire Belarusian economy – from a linear to a circular business model. According to the survey, the lack of funding is considered as the main barrier to circular transformation among Belarusian companies, as 83.5% of respondents characterized its impact as high or medium. This impediment is followed by the absence of circular technologies that can be applied at the surveyed enterprise (64.9%) and the lack of information and best practice examples with regard to the implementation of circular business models (62.4%). Half of the respondents also indicated that the shift from a linear economy is hampered by the lack of consulting on how to implement circularity (see Figure 2).

Figure 2. Barriers to the circular transformation of the Belarusian enterprises, % respondents

Source: Figure compiled by the authors on the basis of the survey results.

Enterprises identified specific technical challenges associated with possible supply chain constraints. In particular, 40% of respondents raised concerns about the absence of an online database on waste and secondary raw materials, and 39.3% of them worried about possible interruptions in the supply of secondary raw materials.

Stimulus for Circular Transformation in Belarus

Respondents also expressed their views on potential stimulus measures that could be implemented to encourage a transition towards a circular economy in Belarus. Tailored support programs (83.9%), tax incentives (78.5%), and development of infrastructure for the processing of secondary raw materials (76.4%) were identified as the strongest motivators for enterprises’ decision to opt for a circular business model. Other important measures listed by the respondents were revisions of the legislative framework to prioritize the use of secondary raw materials, prevent waste generation, etc. (67.4%) as well as access to consulting on how to implement circularity in a business (62.8%) (Figure 3).

Figure 3. Stimulus for the circular economy development in Belarus, % of respondents

Source: Figure compiled by the authors on the basis of the survey results.

Surveyed enterprises stated that they had already incorporated some circular economy elements in their business model. More than 35% of respondents have used recycled materials in the production process, 19% have recycled products in the production of new materials or products, and around 19% have reused products or embedded raw materials. Moreover, more than 35% of enterprises would be ready to introduce reusage and recycling in their business within the next three years. However, they emphasized that existing regulations should be revised, and economic incentives provided in order to encourage these efforts.

Conclusion

The results confirm that Belarus has potential for circular economy development. Yet, its implementation might be hampered by economic, regulatory, informational, and technological barriers. In particular, the surveyed enterprises stated that high upfront costs, e.g., for technology and equipment, as well as the lack of state economic incentives, are the most pressing impediments to the circular transformation of Belarus. At the company level, lack of funding is seen as the main obstacle in shifting from a linear to a circular business model. Another important barrier is lack of information, as enterprises are not aware of circular technologies and best practice examples.

The results of our survey suggest that, in order to encourage a transition towards a circular economy in Belarus, a tailored support program should be developed, existing regulations revised, and economic incentives provided. The transition will not be possible without mainstreaming a circular economy into Belarus’ policy agenda.

References

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.