Tag: Transition countries

European Democracy Through the Lens of Party Manifestos

A group of flags representing European countries, displayed on flagpoles with a clear blue sky in the background representing European democracy

The subjects of political discourse are important but hard to quantify. This brief uses data from 30 years of party manifestos to study how the dominant topics in politics have evolved across Europe. Transition countries have seen the most significant shift in the content of political discourse. In the early 1990s, party manifestos in Eastern Europe focused on a distinct set of topics related to transition; by recent elections they had converged to those in Western Europe, with a heavy emphasis on the welfare state, education, infrastructure and technology. Political discourse can change rapidly in times of crisis as shown by the example of Ukraine.

“It’s the economy, stupid!”

James Carville, Bill Clinton’s strategist for the 1992 election.

The dominant topics in politics are not always as apparent as when Bill Clinton was elected US president in the midst of a recession. While it is easy to track winners across election cycles, it is much harder to know what got them elected and what they will do (or at least, promise to do) once in power. The key issues and topics that political parties and candidates talk about form as important a part in our democracies as vote shares.

In this brief, we use data collected by the Manifesto Project (Lehmann et al., 2022) to describe the development of political discourse across Europe, with a particular focus on the differences and similarities between western European countries and transition economies in Eastern Europe.

Political Manifestos as Data

In most countries, voters mainly participate in the democratic process by voting for candidates put forward by political parties. Political parties advertise themselves to voters and distinguish themselves from each other by issuing party programmes or party manifestos where they lay down their ideological and policy positions.

The Manifesto Project provides a publicly available dataset on parties’ policy platforms. The data are based on the manifestos of parties that have won at least one (Western Europe) or two seats (transition countries) in a national election. Coders manually analyse the content of the manifestos and provide the percentage of each party’s manifesto that falls into one of 56 content categories. These content categories summarise a party’s policy position on given issues, for instance, whether they favour environmental protection or an expansion of the welfare state or oppose protectionism or multiculturalism.

The Manifesto Project is an example of “text as data“. Quantitative analysis based on text is becoming increasingly important across the social sciences (Gentzkow et al., 2019) but it is particularly useful in political economy and political science given that “language is the medium of politics“ and objective numerical data are often limited (Grimmer and Stewart, 2013). Unlike many recent approaches which process data using automated text analysis tools, the Manifesto Project relies on the judgement of coders from over 50 countries who read the original text. The resultant dataset has limitations: the subjective choices made by individual coders, the to-some-extent arbitrary determination of content categories to summarise the most relevant issues across different contexts and time periods and the difficulty of imposing consistent classifications for texts written in over 40 languages. Despite these caveats, it is a unique resource for analysing the evolution of countries’ political discourse over time and across countries.

Key Issues in Political Discourse

Figure 1 summarises, through content categories, the policy positions of parliaments in Western Europe and transition countries at two points in time: the early 1990s (around the time of the first democratic elections in most transition countries) and after the latest election. We measure the importance of a policy position in a country’s parliament by weighting the importance of the relevant content category in each party’s manifesto by that party’s vote share. Over time, our measure of a policy position’s importance in political discourse may increase or decline for two reasons. First, parties may change the extent to which they emphasise a given position in their manifestos. For example, parties across the political spectrum are likely to have increased references to healthcare in their manifestos during election campaigns held during the Covid-19 pandemic. Second, as voters’ preferences shift, parties that gain support will see their issues receive greater weight in the aggregate measure relative to parties that lose vote shares. For example, if the pandemic shifted voters’ preferences towards a more comprehensive welfare system, voters could respond by voting for parties which discuss the expansion of the welfare state in their manifestos.

Figure 1. Policy positions of parties in parliament.

Source: The Manifesto Project and authors’ calculations.
Notes: This chart shows word clouds of the main topics that feature in the manifestos of political parties in parliament, weighted by each party’s vote share and averaged across countries within a region. Panels a and b are based on the first election after 1990 (and before 1995) and Panels c and d are based on the latest election (after 2015) in the sample. Western Europe includes Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom. Transition economies include Armenia, Azerbaijan, Bosnia-Herzegovina, Bulgaria, Croatia, Czech Republic, Estonia, Georgia, Hungary, Latvia, Lithuania, Moldova, Montenegro, North Macedonia, Poland, Romania, Russia, Serbia, Slovakia, Slovenia and Ukraine. Not all countries are represented in both periods.

Some striking patterns emerge. While the policy priorities of Western European parliaments remain relatively stable over the past 30 years, those of transition countries have changed markedly. During the transition period, many parties focused on the political and economic aspects of transition. Support for democracy, freedom and human rights, as well as the free market economy, featured heavily in the manifestos of parties that formed the first democratic parliaments. Over time, policy priorities in transition countries have become more similar to those of their western neighbours, and issues such as the expansion of the welfare state, the provision of education, and the importance of technology and infrastructure, have come to the fore in all countries.

Nevertheless, some differences still remain. For instance, environmental protection is one of the most important topics in western European parliaments, though its importance has declined over time. In transition countries, the environment is slowly becoming more important, but even in the latest elections it ranked at only number 16 out of 56 issues. In contrast, support for the “national way of life” was and continues to be a prominent part of the political discourse in transition economies and it is also becoming more mainstream in the Western European countries.

Political corruption and governmental and administrative efficiency have become relatively more important issues in the parliaments of transition countries, both over time and relative to their western neighbours. Meanwhile, parties in Western Europe are devoting more of their manifesto to calls for equality and social justice.

A Closer Look at Ukraine

A country’s parliament’s policy platform can change suddenly in response to shocks. Figure 2 shows the big topic groups in the manifestos of political parties in the Ukrainian parliament from 1998 to 2019. The parliamentary election in October 2014 closely followed the Euromaidan Revolution, the annexation of Crimea by Russia and the start of the Donbas war. Compared to the previous elections, external relations became a major issue in the Ukrainian parliament, driven in particular by increased mentions of the military and the relationship with the EU. Party manifestos heavily featured appeals to Ukrainian nationhood, national solidarity, and unity (as evidenced by the increasing importance of the content category “Fabric of Society”). The trend of increasing attention to freedom and democracy also continued in this election cycle. In contrast, the previously most important issues in elections (welfare and quality of life) received much less attention in parliament at times of political upheaval and military conflict.

Figure 2. Topics in Ukrainian elections.

Source: The Manifesto Project and authors’ calculations.
Notes: This chart shows the percentage of mentions of topic groups in the manifestos of political parties in the Ukrainian parliament from 1998 to 2019, weighted by each party’s vote share.

Distribution of Political Ideology

While the previous section discussed the main policy issues in parliament, we now turn our focus to the ideology of individual political parties that make up a country’s parliament. A commonly used summary measure of political ideology is a left-right scale (RILE), where left positions favour peace, state intervention in the economy and the expansion of the welfare state and right positions support security, traditional values and the free market economy. The Manifesto Project provides a RILE value for each party at each election (based on Laver and Budge, 1992), which is calculated by subtracting the share of a party’s manifesto devoted to left-leaning policy issues, for instance support for the welfare state, from right-leaning content, such as support for the free market economy. Condensing the complexity of party programmes into a one-dimensional measure based on fixed definitions has advantages and drawbacks. The RILE makes it possible to compare diverse political parties that campaign on different issues (for instance ecological parties compared to nationalist parties) and measure how the same party’s policy stance may have shifted over time. As the definition of left- and right-leaning issues were based on influential political theories around the 1900s, some scholars argue that this measure has become less appropriate to empirically differentiate between modern political parties, particularly in transition countries (see, e.g., Mölder, 2016). In particular, Tavits and Letki (2009) show that during the transition process many leftist parties in Eastern Europe pursued economically right-wing policies and Vachudova (2008) argues that right-wing parties in the region often appealed to a nationalist discourse.

With these caveats in mind, Figure 3 shows the distribution of all parties in parliament in the Manifesto Project database on the RILE scale, weighted by their respective vote shares. In Western Europe in the 1990s, the chart shows the prominence of both centre-left and centre-right parties, as well as smaller parties both on the more extreme left and right. In contrast, the parties in parliament in transition economies at the time were more concentrated in the centre (and slightly towards the right). Fast forward 30 years and the distribution of political ideology has changed in both the east and the west. In Western Europe, the majority of parliamentarians are now situated slightly right of centre with little mass in the more extreme tails. In contrast, in the former transition countries, there is evidence of political polarisation with party representation moving both to the left and the right on the ideological spectrum and relatively few parliamentarians occupying the centre.

Figure 3. Left-right position of parties in parliament.

Source: The Manifesto Project and authors’ calculations.
Notes: This chart shows the density of parties in parliament on the left-right policy scale (RILE), weighted by each party’s vote share within their country. The dashed lines are based on the first election after 1990 (and before 1995) and the solid lines are based on the latest election (after 2015) in the sample. Western Europe includes Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom. Transition economies include Armenia, Azerbaijan, Bosnia-Herzegovina, Bulgaria, Croatia, Czech Republic, Estonia, Georgia, Hungary, Latvia, Lithuania, Moldova, Montenegro, North Macedonia, Poland, Romania, Russia, Serbia, Slovakia, Slovenia and Ukraine. Not all countries are represented in both periods.

Conclusion

What are the main topics of political discourse? Are they different across countries? Do they change over time? While there is no perfect way to quantify and track political discourse over time, this brief uses data from parties’ manifestos provided by the Manifesto Project to illustrate some broad trends across Europe over the past 30 years.

We document two kinds of changes in the subject matter of party manifestos. First, there are gradual shifts in content that reflect underlying developments in society. As democracies have matured in Eastern Europe, the content of their parties’ manifestos has evolved away from the immediate concerns of economic and political transition and converged to those of Western European parties. Second, more abrupt shifts can arise when countries experience crises or institutional upheaval. Over the past decade Ukrainians have lived through a revolution, the Donbas war, and the ongoing Russian invasion. Most of the parties that represent them in parliament are new, and the issues that feature prominently in their manifestos are now markedly different from those before the Euromaidan revolution.

Manifestos are not just about substance but also about ideology. Using the Manifesto Project’s classification of parties on a left-right scale, we show how the distribution of parties has evolved in Western Europe and transition countries. By this measure, political polarisation has been increasing in transition countries where centrist positions are less well represented than in Western European parliaments.

References

  • Gentzkow, Matthew, Bryan Kelly, and Matt Taddy. (2019). “Text as data”, Journal of Economic Literature 57, no. 3: 535-74.
  • Grimmer, J., and Stewart, B. (2013). “Text as data: The promise and pitfalls of automatic content analysis methods for political texts”. Political analysis 21, no. 3: 267-297.
  • Lehmann, P., Burst, T., Matthieß, T., Regel, S., Volkens, A., Weßels, B. and Zehnter, L. (2022) The Manifesto Data Collection. Manifesto Project (MRG / CMP / MARPOR). Version 2022a. Berlin: Wissenschaftszentrum Berlin für Sozialforschung (WZB). https://doi.org/10.25522/manifesto.mpds.2022a
  • Laver, M. and Budge, I. (eds.). (1992). Party Policy and Government Coalitions, Houndmills, Basingstoke, Hampshire: The MacMillan Press.
  • Mölder, M. (2016). The validity of the RILE left–right index as a measure of party policy. Party Politics, 22(1), 37–48. https://doi.org/10.1177/1354068813509525
  • Tavits, M. and Letki, N. (2009). When Left Is Right: Party Ideology and Policy in Post-Communist Europe. American Political Science Review, 103(4), 555-569. doi:10.1017/S0003055409990220
  • Vachudova, M. A. (2008). Centre—Right Parties and Political Outcomes in East Central Europe. Party Politics, 14(4), 387–405. https://doi.org/10.1177/1354068808090252

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Higher Education and Research in times of War and Peace: Key Insights from the 2022 FREE Network Conference

20220925 Higher Education and Research Image 02

More than thirty years after the collapse of the Soviet Union, Europe is struck with war following the Russian aggression on Ukraine. Russia’s war on Ukraine entails lost human capital, both in actual lives lost and due to major disruptions to key functions of the society, such as education and research. In light of this, the FREE Network, together with the Centre for Economic Analysis (CenEA) and the Stockholm Institute of Transition Economics (SITE), hosted the public conference “Higher Education and Research in War and Peace“ in Warsaw on the 10th of September 2022. This policy brief is based on the presentations and panel discussions held during the conference.

The large-scale Russian invasion of Ukraine has disrupted an entire society, including the education system, with Ukrainian schools just recently partially welcoming back students to the classrooms for the first time since the 25th of February 2022. Closing schools has severe impacts on a population, as highlighted by the recent Covid-19 pandemic. The lockdown and closure of schools around the world following the virus have had and will continue to have massively negative consequences globally, with severe losses in human capital due to lost years of education. This is especially in countries where access to online education is limited or of poor quality. Inequalities also rise following the closure of schools and girls return to school in fewer numbers than their male counterparts. The disruption to the Ukrainian education system will result in lost human capital and lowered levels of knowledge among the population. The war has further restricted access to relevant information for many Ukrainians but also for Russians, making people susceptible to the increased Russian propaganda and misinformation about the war on Ukraine depicted within and outside of Russia.

In light of this, the FREE Network gathered representatives from its affiliated institutions and other relevant actors in the region to discuss the relevance and necessity of continued support for higher education and research within social sciences in Ukraine, and more broadly in Eastern Europe and post-Soviet countries. The conference and the overarching theme related back not only to the original ambition of the FREE Network, namely to support outstanding academia within economics and relate it to policy work but also to the current situation in Europe and the existing threat from Russia to this objective.

This brief will initially cover the work carried out by the Kyiv School of Economics (KSE) in response to the Russian aggression, followed by thoughts on Russia’s role in the evolution of knowledge and human capital in the region. The brief continues by covering the benefits and positive outcomes of investments into education and research and lastly concludes with reflections on the role of the FREE Network.

The Kyiv School of Economics’ Response to the Russian Aggression

The war on Ukraine put the spotlight on the importance of high-quality academic institutions as a safety net for the government to maintain vital functions to society. The Vice President for Policy Research at KSE, Nataliia Shapoval, gave a brief overview of how KSE’s work has changed since the Russian war on Ukraine and its implications. Shapoval initially painted a picture of the disruption to the Ukrainian society caused by the Russian aggression, explaining how KSE stepped up during the first months of the war, in some areas doing the work of ministries. While the government has mainly taken back some duties, the KSE is still providing policy advice in areas related to the effects of sanctions, estimates of damages, and food security among others. KSE is also highly active within the areas of education and health, working with Ukrainian schools through the KSE Charitable Foundation (KSE CF) to ensure students can safely return to the classrooms.

Another important aspect of the work carried out by KSE concerns spreading knowledge about and shedding light on the situation in Ukraine. Through the various networks, by talking to colleagues within academia but also to the media, KSE is trying to explain what has happened and is still happening in Ukraine. According to Shapoval, there is a need for delivering correct information and to keep attention fixed on the situation in Ukraine such that people are kept aware of what is going on in the region.

Shapoval also regularly returned to the role of education and research for the present and future Ukraine. According to Shapoval, avoiding brain drain and ensuring Ukrainians are equipped with the necessary knowledge is key to rebuilding a future Ukraine founded on well-functioning democratic institutions. To facilitate this, the KSE is offering two programs, Memory and Conflict Studies (a multidisciplinary field concerned with how the past can be understood and remembered, and how it might impact the present transformation of societies) and Urban Studies, both aimed at covering the future need for competence within these fields. Further mentioned by Shapoval is the fact that, due to the war, many Ukrainians have left the country and are being educated elsewhere. While this partially ensures intellectual human capital is not lost, these students must be kept anchored to Ukraine through networks to ensure they will return back to help rebuild Ukraine. This is especially important in order to counter the ongoing evolution in Russia.

Thoughts on the Role of Russia in the Region

While the recent developments in Ukraine have of course disrupted education and research in more severe and tangible ways, the situation for independent researchers in Russia has also deteriorated. Torbjörn Becker, Director of SITE, emphasized how several Russian colleagues in exile still collaborate with the FREE Network on policy work and research. Becker also further stressed how they will be paramount once Ukraine wins the war, as will the role of partnerships for a future transformation of the Russian society. Acknowledging that there are many Russians (especially amongst academics in exile) who oppose the war, Shapoval however stressed the disturbing fact that many Russians do seem to support the Russian aggression and that the role of Russia as a destructive force in the region cannot be understated. This was seconded by Tamara Sulukhia, Director of the International School of Economics at Tbilisi State University (ISET). Sulukhia argued that Russian politics slow down and disturbs the free states within the region, and hampers organizations and countries from moving in the right direction in regard to democracy, economic evolution and integration toward Europe. Both Shapoval and Sulukhia reminded the audience that even with a Ukrainian victory, and this in a war which is defining the future of democracy in the region, Russia will persist. Russia has proven time and again, by effectively occupying 23 percent of Georgia as of 2008, with the occupation of Crimea in 2014 and with the most recent war on Ukraine, to be a real military threat to post-Soviet countries. Even though Russia losing the war would shift the power dynamics in the region, the ever-present threat of Russia is not only of a military character. Russia also attempts to impact education, research and knowledge more generally by promoting a Soviet-style education and by altering reality through propaganda and false information.

While discussing the current situation of higher education within economics in Belarus, Dzmitry Kruk, Deputy Academic Director of the Belarusian Economic Research and Outreach Center (BEROC), regularly came back to the negative impacts from Russia on the quality of education and research. Where the western style education is free but also differential, Soviet-style education is centred around learning how to fulfil instructions, according to Kruk. The Belarusian educational system is anchored to Russia and as a result Belarusians today have what Kruk referred to as a “spoilt mental map”. The necessity of free education and research outside the Russian alternative (which is mainly published in Russian and with a post-Marxist view of the world) is vital in order to equip people with the tools to respond to the new types of dictatorship evident in the region. Young people within academia who have experienced freedom and have had the opportunity of thinking for themselves will also be vital on the future path toward democracy. Kruk’s opinions were furthered by Shapoval stating how education must and should counter the risk of brainwashing in the region and in the world as a whole. Shapoval argued the necessity of countering propaganda with the help not only of education but also the legislation of media and social media and enforcement of international laws in general. The necessity of ensuring new values for intellectuals and students in times to come is of paramount value and, according to Shapoval, as important to halting the Russian imperialist visions today as it was some thirty years ago. Shapoval further argued that the threat from Russia’s ambitions should be met not only with education and research but also through installing a sense of hope and prosperity among young people.

Investments into Education and Research as a Safeguard and Development Driver

While countries within the turbulent region differ, not least in regard to overall political ambitions and structure, in most of them investments into education and research have been paying off. KSE’s expertise allowed it to work closely with the Ukrainian government, standing strong in their fight against Russia. The impact from investments into education and research in the region is also evident in both Georgia and Latvia.

Sulukhia argued ISET to be, and to have been, a key contributor to human capital among Georgians as well as others in the Caucasus region. Sulukhia argued this to be especially important when under occupation, mentioning how Georgia has, since the occupation of the two regions of Abkhazia and South Ossetia, in all ways possible tried to ensure that the human capital of internally displaced people is not lost. ISET have ten folded its intake of students and is today providing world-class education in the Georgian language, effectively counteracting brain drain. Post-graduates are working in major institutions providing relevant knowledge and competence in key areas of not only the Georgian society but also other countries in the Caucasus. A similar picture was painted by Anders Paalzow, Rector at Stockholm School of Economics in Riga (SSE Riga). Paalzow specifically pointed out how the investments in education made in Latvia in the 1990s have truly paid off, with graduates having been absorbed into relevant parts of the Latvian society and the Baltics for decades.

Having previous students in key positions in society to ensure sound policy work (such as good fiscal and audit control of the countries in question etc.) is however not the only benefit of investing in education and research within the region. As emphasized by Sulukhia, institutes within the FREE Network and other networks alike are strategically vital in the sense that they ensure knowledge and evidence for policy makers and as they convey evidence-based messages for the general public. This is especially important in a time when the message of the developmental direction for the countries within the region has to be reinforced in order to stand against Russian misinformation and propaganda as well as voices questioning the benefits of European integration. Sulukhia emphasized how it is of importance that the relevance of education and research is rooted among the people and not only within academia to evade the risk of preaching to the choir. Vlad Mykhnenko, Fellow at St. Peter’s College at the University of Oxford, further argued it is necessary for academia to be much more policy oriented than what is the reality today. Researchers should comment on political events and public policy to ensure the outreach of knowledge and information, not just to help the public have a greater understanding of complex issues but also to help inform experts. According to Myhnenko, other researchers are keen on getting context-relevant knowledge and insights from economists working within the region.

The necessity of communicating the outcomes from investments within economics education and research and more broadly within social sciences was a recurring theme during the conference. Presenting the University’s engagement in various programs such as Erasmus+, Horizon Europe, The European Strategy for Universities etc., Professor Agnieszka Chłoń-Domińczak from the Warsaw School of Economics (WSE) outlined the importance of funding from the EU. Chłoń-Domińczak highlighted how EU support has enabled greater partnerships and internationalization and pointed out that while the transfer of knowledge and internationalization of students and researchers are of the essence, there is a need for also ensuring capacity building among other staff when building sound institutions. Internationalization through the exchange as a hedge against brain drain and as a means of improving the quality of academia was further emphasized by Michal Myck, Director of CenEA.

Chłoń-Domińczak, alongside Paalzow and the Swedish Ambassador to Poland, Stefan Gullgren, further argued the necessity to bridge between business and academia. This, especially as investments in social sciences, as compared to investments in natural sciences or technology cannot be commercialized. Additionally, the former havs payoffs in the long run which lowers investment incentives for firms making it even more crucial to communicate the large benefits to society of investments into the sphere. Ensuring consistent and continued support requires not only a good connection to businesses but also proper legal structures in place. As argued by Gullgren, the Swedish model with private businesses funding about 70 percent of research and education in Sweden, is made possible largely thanks to the fact that many investments are funnelled through foundations that are exempt from taxation when set up to finance research grants and education. Thus, one should consider not only business, academia and investors when thinking about future funding for research and education, but the legislative framework as well, especially in contexts such as the future rebuild of Ukraine.

As for how the benefits from investments into social sciences best are communicated, opinions shifted among participants throughout the day. On the one hand, Becker’s argument of being visible not only in traditional media but on social media alike was met by Shapoval, highlighting the need for a regulatory framework for both platforms. On the other hand, Myhnenko’s argument for more policy oriented and outreaching research was met by Kruk claiming there is a risk of researchers within economics deviating too far from research within the field. Kruk also addressed the argument of being available on social media by countering that in his view, researchers should refrain from work based on what generates clicks or reads.

The Relevance of the FREE Network in times of War

Considering the evidence brought forth during the conference by colleagues within the FREE Network, be it the suppression of BEROC in their efforts of founding a School of Economics in Belarus, the effects on the KSE from the war on Ukraine, or the rise of anti-European expressions in Georgia, the necessity of the network was at the end of the day perhaps clearer than ever. As highlighted by virtually all speakers during the conference, internationalization through networks such as the FREE Network fosters open minds, allows for improvements within all aspects of academia, and enables the exchange of thoughts, ideas and experiences. Although the heterogeneity of the region should not be overlooked and investments made in accordance with this, the similarities between the countries within the FREE Network outnumber the differences. The immediate threat from Russia must be met with knowledge and fact-based information as well as high-quality education and research being made available among the population in the region as a whole. To ensure a continued transition within the region, the risk of brain drain must be evaded through continuous support to the social sciences, as these have the power to truly transform nations.

Concluding Remarks

The FREE Network public conference in Warsaw was the first in-person conference since the outbreak of the Covid-19 pandemic. The benefits of meeting in person were however overshadowed by the ongoing Russian aggression on Ukraine and ultimately on democratic ideals, including those of independent academia. We hope to welcome all FREE Network institutes to next year’s conference in Kyiv, to further discuss how outstanding education and research can help rebuild a sovereign Ukraine.

List of Participants

  • Torbjörn Becker, Director of SITE
  • Agnieszka Chłoń-Domińczak, Professor at WSE
  • Stefan Gullgren, Swedish Ambassador to Poland
  • Dzmitry Kruk, Deputy Academic Director, BEROC
  • Michal Myck, Director of CenEA
  • Vlad Mykhnenko, Fellow, St. Peter’s College, University of Oxford
  • Anders Paalzow, Rector SSE Riga
  • Nataliia Shapoval, Vice President for Policy Research at KSE
  • Tamara Sulukhia, Director of ISET

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Ukraine’s Integration into the EU’s Digital Single Market

Blue EU flags in front of European Commission representing Ukraine’s integration into the single market

This brief is based on a study that investigates how Ukraine’s integration into the EU Digital Single Market (DSM) could affect EU-Ukraine bilateral trade as well as Ukraine’s GDP growth.  The major benefits of integration are expected to come from 1) reduction of cross-border regulatory barriers and restrictions to EU-Ukraine digital trade 2) acceleration of the development of Ukraine’s digital economy in line with EU standards. According to the results, enhanced regulatory and digital connectivity between Ukraine and the EU is expected to increase Ukraine’s exports of goods and services to the EU by 11.8-17% and 7.6-12.2% respectively. At the same time, the acceleration of the digital transformation of the Ukrainian economy and society will produce a positive effect on its productivity and economic growth – a 1%-increase in the digitalization of the Ukrainian economy and society may lead to an increase in its GDP by 0.42%.

Background

Integration into the EU has been one of the key topics on Ukraine’s political agenda for a number of years. Recently, more emphasis has been put on an essential component of issue – integration into the EU’s Digital Single Market (DSM). The DSM is a strategy aimed at uniting and enhancing digital markets and applying common approaches and standards in the digital sphere across the EU. The Ukraine-EU Summit, held on October 6, 2020, stressed the paramount importance of the digital sector in boosting its economic integration and regulatory approximation under the EU-Ukraine Association Agreement. Implementation of the provisions of this agreement, in particular the updated Annex XVII-3, would introduce the latest EU standards in the field of electronic communications in Ukraine. The country is also gradually approximating its regulations with regard to other components of the EU DSM – electronic identification, electronic payments and e-payment systems, e-commerce, protection of intellectual property rights on the Internet, cybersecurity, protection of personal data, e-government, postal services, etc. These steps will, in turn, ensure Ukraine’s gradual integration into the EU’s Digital Single Market, which will facilitate digital transformations within the country and open a new window of opportunity for individuals and businesses.

This brief summarizes the results of our recent work (Iavorskyi, P., et al., 2020), in which we estimate the effect that Ukraine’s integration into DSM could have on EU-Ukraine bilateral trade as well as Ukraine’s GDP growth.

Benefits of Integration into the EU DSM

The EU DSM strategy comprises three pillars: (1) better access for consumers and businesses to digital goods and services across Europe; (2) creating the right conditions and a level playing field for digital networks and innovative services to flourish; (3) maximizing the growth potential of the digital economy (EC, 2021).

These goals suggest that the major benefits of Ukraine’s integration into the DSM are likely to come from 1) reduction of cross-border regulatory barriers and restrictions to EU-Ukraine trade, 2) acceleration of the development of Ukraine’s digital economy in line with EU standards.

Indeed, the trade of goods and services is increasingly becoming “digital” – i.e., involving “digitally enabled transactions in goods and services that can be either digitally or physically delivered” (OECD, 2019). Trade digitalization (e.g., electronic contracts, electronic payments, e-customs, etc.) simplifies export and import procedures, reduces trade costs for exporters, and creates new opportunities for trade with the EU, in particular for SMEs. Therefore, the reduction of regulatory restrictions on cross-border digital trade reduces the overall level of restrictiveness of trade in goods and services.

Thus, digitalization is expected to facilitate and intensify the total EU-Ukraine trade in goods and services. It is also anticipated to increase the productivity of Ukraine’s economy which will have a positive impact on the country’s economic growth.

Major benefits include lower prices and greater access to EU online markets for Ukrainian consumers and business, digital innovative products and services, greater online consumer protection, lower transaction costs for businesses, improved quality and transparency of public digital services and e-government as well as an intensification of innovation development in Ukraine.

At the same time, Ukraine’s integration into the DSM entails several obligations: to align national legislation and standards with EU legislation and standards; to ensure institutional and technical capacity as well as interoperability of digital systems. For businesses in Ukraine, this means facing new EU requirements aimed at improving consumer and personal data protection, as well as increased competition from European companies in digital markets. However, these changes are necessary if the country wants to build a common economic space with the EU, especially given the growing impact of digital technologies on international trade and economy.

Ukraine in International Digital Rankings

Many international digital development rankings show that Ukraine lags behind EU countries, including its neighbors that recently joined the EU.

According to the UN e-Government Development Index (EGDI) for 2020, Ukraine ranks 69th among 193 countries and is included in the group of countries with high levels of e-government development. It received the lowest scores for Telecommunications Infrastructure and Online Services, and the highest for Human Capital. Nevertheless, Ukraine is lagging behind its neighboring EU members, – Poland, Hungary, Slovakia, Romania, Bulgaria, Lithuania, etc., – which belong to the group of countries with very high levels of e-government development (UN, 2020).

In the Network Readiness Index (NRI) ranking for 2019, Ukraine ranked 67th among 121 countries. As for the components of the index, Ukraine ranks worst in the following indicators: Future technologies (82nd out of 121), ICT Use by Government and Online Government Services (87th), and Regulatory Environment (72nd). Neighboring EU countries have higher rankings (Poland – 37, Latvia – 39, Czech Republic – 30, Croatia – 44). Other neighboring countries do somewhat better than Ukraine (Turkey is ranked 51st, Russia – 48th) or occupy positions close to Ukraine (Belarus – 61, Moldova – 66, Georgia – 68) (Portulans Institute, 2019).

In 2019, the country ranked 60th among 63 countries included in the World Digital Competitiveness Ranking (WDCR) rating. Just as in the other rankings, Ukraine scored well in the Knowledge component (40th among 63 countries), while in terms of Technology and Future Readiness it was at the bottom (61st and 62nd position respectively) (IMD, 2019).

Hence, it is primarily the technological and regulatory issues, that need to be addressed in order to improve Ukraine’s digital position in the region and the world.

Methodology

Measuring Ukraine’s Digitalization level

In order to estimate the impact of digitalization, a Composite Digitalization Index is calculated for Ukraine, the EU, and other countries included in the model. This index is based on 11 digital indicators, combined into five components that characterize different areas of the digital economy and society Connectivity, Use of the Internet by citizens, Human capital, Integration of digital technology by businesses, and Digital public services.

Our results confirm that the level of digital development in Ukraine is far below the EU average. It also lags behind the new EU Member States, which have a lower level of digital development compared to the other EU countries. As of 2018, the widest gaps between Ukraine and the EU average are found in Digital Public Services, Connectivity and Use of Internet by citizens. At the same time, Ukraine performed better in Human Capital and Integration of digital technology by businesses.

Measuring Digital Services Trade Restrictiveness in Ukraine

To assess the impact of digital regulatory barriers on trade, we use the Digital Services Trade Restrictiveness Index (Digital STRI) (OECD, 2020). It quantifies the regulatory barriers in five different policy areas (communication infrastructure, electronic transactions, electronic payments, intellectual property, other restrictions) that affect trade in digital services (Ferencz, J., 2019). OECD calculates Digital STRI for OECD countries and some non-OECD countries. As Ukraine is not included in this index, we estimate it for 2016-2018 using the OECD methodology.

Our estimations show that the level of digital services trade restrictiveness in Ukraine is much higher than the EU average. The regulatory differences in the digital sphere between Ukraine and the EU increase the cost of cross-border digital transactions between countries.

For Ukraine, most barriers are related to cross-border electronic payments and settlements, protection of intellectual property rights on the internet, cross-border electronic transactions (for example, the divergence of the national requirements for foreign trade agreements, including electronic ones, from international practices and standards, lack of practical mechanisms for the application of the electronic digital signature in foreign trade contracts, lack of mutual recognition of electronic identification and electronic trust services between Ukraine and major trading partners, etc.), other barriers (requirements for the use of local software and cryptography, etc.). These regulatory restrictions significantly hinder the development of cross-border cooperation and Ukraine’s integration into the European and global digital space.

Ukraine’s integration scenarios

In the event of Ukraine’s integration into the EU DSM, the country’s regulatory environment and digital development are expected to gradually approach the EU averages. We model it through assuming that the regulatory differences between Ukraine and the EU (captured by the Digital STRI Heterogeneity Indices – see OECD, 2020) will be decreasing, and level of digitalization in the country (captured by the Digitalization Index – OECD, 2020) will converge towards that of EU-DSM members.

We considered three integration scenarios that imply high, medium, and low levels of Ukraine’s approximation to the regulatory environment and digital development of the EU. For instance, the high scenario implies the highest level of Ukraine’s digital development and the lowest level of regulatory differences between Ukraine and the EU.

Models

We study the effect of reduced regulatory differences in the digital sphere on Ukraine-EU trade using a gravity model – one of the traditional approaches in the international trade literature. A gravity model predicts bilateral trade flows based on the size of the economy and trade costs between countries (affected by distance, cultural differences, FTAs, tariffs, etc.)

The study uses the following specification of the model for exports of goods and services in 2016-2018:

• Dependent variable – the total export flow of goods and services from country into country j (all possible pairs of countries).

• Independent variables – distance between countries and common characteristics (borders, language, law), existence of a free trade agreement, level of tariff protection (for goods), level of regulatory heterogeneity in the digital sphere between the two countries, and a set of fixed effects for each country.

We also estimate how digital development affects technical modernization, productivity, and economic growth. Technically, we use a Cobb-Douglas production function to describe each country’s output and model its total factor productivity component as a function of digital development (captured by the Digitalization index).

Results

The results suggest that Ukraine’s integration into the EU DSM will be beneficial for both Ukraine and the EU. Under all integration scenarios, bilateral trade between Ukraine and the EU is expected to intensify considerably due to enhanced regulatory and digital connectivity between the two.

Ukraine’s total exports of goods and services to the EU are estimated to grow by 11.8-17% ($2.4-3.4 billion) and 7.6-12.2% ($302.5-485.5 million), respectively – a cumulative increase throughout the period of implementation of reforms aimed at regulatory and digital approximation of Ukraine to the EU.

 Figure 1. The impact of Ukraine’s integration into the EU’s DSM on the exports of services from Ukraine to the EU*: three integration scenarios

Source: Authors’ own calculations. The current level of Ukraine’s exports of services to the EU – as of 2018

Figure 2. The impact of Ukraine’s integration into the EU’s DSM on exports of goods from Ukraine to the EU*: three integration scenarios

Source: Authors’ own calculations. The current level of exports of Ukrainian goods to the EU as of 2018

The EU would increase its exports of goods and services to Ukraine by 17.7-21.7% ($4.1-5 billion) and 5.7-9.1% ($191-305 million), respectively.

The acceleration of Ukraine’s digital development will bring productivity gains that would transform into higher GDP growth. It is estimated that a 1% increase in Ukraine’s digitalization level is expected to raise its GDP by 0.42%. As a result, the country’s gradual approximation to EU levels of digitalization would result in additional Ukraines GDP growth of 2.4-12.1% ($3.1-15.8 billion), depending on the scenario.  

Figure 3. Impact of digitalization on Ukraine’s GDP growth: three digitalization increase scenarios

Source: own calculations. The left axis – GDP growth (%), the right axis – the level of digitalization. The current level of digitalization of Ukraine as of 2018.

Conclusion

According to our estimations, improved digitalization and reduction of regulatory barriers in the digital sphere between Ukraine and the EU will have a positive effect on trade for both Ukraine and the EU. There is also a significant potential for economic growth to be attained in Ukraine by increasing digitalization and productivity of various spheres of the economy and society.

Realization of this potential would, however, require a substantial regulatory approximation on the Ukrainian side to achieve alignment with the EU DSM. The main emphasis needs to be put on electronic identification and transactions, payment systems and electronic payments, protection of intellectual property rights on the internet, cybersecurity, and personal data protection.

References

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Public Healthcare Expenditures in Transition Countries: Does Government Spending Respond to Public Preferences?

An image of surgery room with two doctors in green protection gear representing public healthcare expenditures

The transition from centrally planned to free-market economies in 1989 initiated a period of social and economic upheaval in post-communist countries, which affected healthcare quality, expenditures, and outcomes. We use data from the Life in Transition Survey (LiTS) to demonstrate that in spite of improvements across various measures of these facets of the healthcare system, it remains the first choice for additional government spending among the public in all countries of the region included in this study. Preferences in priorities for extra budget spending were similar among men and women in respective countries, but the preference for additional healthcare spending was stronger among women than men. The transition countries are compared with Germany and Italy – two Western European LiTs survey participants, countries with higher spending, and better healthcare outcomes.

Introduction

Across the globe, the outbreak of the COVID-19 pandemic has brought a new spotlight to the preparedness of healthcare systems for profound shocks (Anser et al, 2020). Critical care is a particularly costly element of healthcare provision, and thus, under-resourced systems are uniquely susceptible to spikes in mortality resulting from an oversaturation of intensive care units during an epidemiological crisis of this sort. (Fowler et al, 2008; Mannucci et al, 2020) Considering the widespread discussion surrounding health system capacity and the necessity for implementing economically painful lockdowns when those limits are reached, pressure from society to increase public spending may grow even further. With these developments in mind, in this policy paper, we confront past expressions of preferences regarding public expenditures with changes in government spending on healthcare between 2006 and 2017. The analysis draws on the one hand on the data from the Life in Transition Survey (LiTS), and on the other on publicly available data on government expenditures and outcomes.

In the context of preferences for additional public spending, we present a descriptive summary of trends in government expenditures on healthcare in Armenia, Belarus, Estonia, Georgia, Latvia, Lithuania, Moldova, Poland, Russia, and Ukraine. We include Italy and Germany as wealthier Western benchmarks, for which the data became available in the second wave of the survey in 2010. Data on public healthcare spending shows that despite a clear and strong public preference for increased investment in healthcare provision, additional spending as a proportion of total government expenditures between 2006 and 2017 has been moderate in most countries, and even negative in some. It must be underlined that expenditures are not always reflected in healthcare outcomes, quality, and coverage. Issues of efficiency, system design, and underlying health conditions of the population play a significant role in the returns on investment. For instance, the United States has spent drastically more per capita on healthcare than any other country and yet ranked lowest in the Healthcare Access and Quality (HAQ) Index among comparable countries (Fullman et al, 2016). However, due to the focus of the survey on government spending, we emphasize government expenditures on healthcare as a pertinent measure, especially in relation to overall GDP, per capita spending, and the public budget as a whole.

There is mounting evidence that one of the most important elements in the mitigation of COVID-19 mortality is the ability to expand system capacity and acquire the necessary equipment (e.g. respirators, ventilators) while ensuring that there is equitable access to measures for spread prevention (e.g. testing) (Khan et al, 2020; Ranney et al, 2020; Wang and Tang, 2020). The increasing pressure on healthcare systems, coupled with the additional fiscal strain resulting from the economic fallout of the pandemic, could lead to further divergence between public preferences and government spending on healthcare.

Healthcare Systems During the Transition

The ability of transition countries to absorb the risks and short-term economic shocks associated with pivoting from a centrally planned to a free-market economy has had dramatic implications for healthcare systems. Although countries in this region were divergent in terms of underlying health conditions, levels of expenditures, and health outcomes, most of them fell victims to deficient funding and additional health risks associated with the initial increases in poverty that were commonplace (Adeyi et al, 1997)

Compared to other transition countries, Georgia and Armenia faced a sharper economic collapse as well as armed conflicts, which caused scarcity in the availability of public healthcare providers and spikes in out-of-pocket expenses. Belarus was slower in the implementation of economic reforms and faced issues of fiscal sustainability further down the line (Balabanova et al, 2012). However, following this short tumultuous period, countries transitioning away from centrally planned economies have generally invested heavily in healthcare since the early 1990s. In many cases, these investments were facilitated by rapid GDP growth and accompanied by significant improvements in life expectancy. For example, between 1989 and 2012, Latvia, Lithuania, and Poland increased their per capita healthcare expenditures by more than 1,000 PPP per year, with an increase in life expectancy ranging from 1.7 years in Lithuania to 5.8 years in Poland (Jakovljevic et al, 2015). Despite heterogeneous and extensive reforms in many of these countries, as well as mixed results in measurements of efficiency and outcomes, healthcare expenditures consistently rank as the top priority for further government spending among both men and women in each country. This consistency lends itself to further policy considerations.

Preferences for Government Spending in Transition Countries

As is demonstrated by Figure 1, in 2016, healthcare was the most common answer to the question – “Which field should be the first priority for extra government spending?”- for all ten post-transition countries included in our analysis (the other options were: education, housing, pensions, assisting the poor, public infrastructure, the environment, and other). The survey was carried out on a representative sample that covers approximately 1,000+ respondents from each of the 29 countries in wave I and up to 1,500+ respondents from each of the 34 countries in wave III (EBRD: LiTS, 2020). Despite intercountry differences, in 2016 healthcare persisted as the top priority for both men and women in every transition country we studied apart from Belarus. While healthcare remained the top priority on average, men expressed a higher preference for additional investment in education. In the countries where preferences for health were particularly strong, healthcare was the first priority for as many as 53.5% of Latvians, 47.7% of Poles, and 43.9% of Moldovans (Figure 1a). Notwithstanding some fluctuations in scale, these preferences were not only common across countries but also across time, with people expressing very similar preferences in the first two waves of the survey in 2006 and 2010. (See Annex Figure A1 and Figure A2). While healthcare remained a popular choice in Germany and Italy, spending on healthcare as a percentage of GDP was nearly twice that of any transition country in Germany. There, education outweighed healthcare among men and women in both available waves (II and III), while pensions surpassed healthcare among men in the latter wave. In Italy, despite a more comparable level of healthcare spending relative to the transition countries, a drastic shift took place as healthcare fell from being the first priority by a large margin of 24.9 percentage points (pp) in 2010 to becoming the second priority after pensions in 2016. This can likely be attributed to the prominence of pensions as a major political campaign issue following the austerity-driven reforms of 2011 (Alfonso and Bulfone, 2019).

 

Figure 1: 1a (left) : Preferences for additional government spending, 2016. / 1b (right): Preferences for additional healthcare spending by gender, 2016

Source: LiTS Wave III data (2016). Notes: Figures show proportions of declared preferences as replies to the question: “Which field should be the first priority for extra government spending?” For clarity of exposition the category ‘social assistance’ aggregates first priority choices of ‘assisting the poor’ and ‘housing’; the category ‘other’ also includes the least popular choices ‘public infrastructure’ and ‘environment’.

Moreover, it is evident that men and women within countries have rather similar preferences, as far as extra government spending is concerned. Not only is healthcare the first priority in all ten transition countries, but their second, third, and fourth choices are also very similar. When digging deeper into the differences that do exist, in every country except for Georgia women had a stronger preference for healthcare than men, and by as much as 8.8 pp, 8.4 pp, 7.8 pp, and 7.9 pp in Latvia, Germany, Belarus, and Russia respectively (Figure 1b). Conversely, in every case except for Georgia and Ukraine, men had a stronger preference for additional spending on education than women, most notably in Armenia – by 7.8 pp, Germany – by 5.7 pp, Lithuania – by 4.6 pp and Poland – by 3.9 pp. It is apparent that despite rapid investment in healthcare over the first two decades of the transition, there remains a widespread desire for further expansion of expenditures in this area.

Trends in Government Expenditures, 2006-2017

Considering the primacy of healthcare as the priority for additional government spending in all ten studied transition countries, we look at trends in aggregate statistics on government expenditures on healthcare over the surveyed period to explore the extent to which these preferences have been reflected in government spending. Taking the most basic measure into account in Figure 2a, i.e. public health expenditures as a percentage of GDP, among the transition countries only Georgia and Estonia have significantly increased their healthcare expenditures, by 1.6 pp and 1.2 pp, respectively. Lithuania, Poland, and Russia saw more moderate increases in the range of 0.6 pp and 0.2 pp. Other countries have remained essentially stagnant, apart from Moldova and Ukraine which saw a notable drop of 0.8 pp.  Considering that this measure is sensitive to fluctuations in GDP growth, we also consider public health spending as a proportion of all government expenditures (see figure A3 in the Annex), which is a better indicator of government priorities for additional spending from 2006 until 2017. Georgia was the only transition country with a significant increase in healthcare spending proportional to total government expenditures, nearly doubling it from 5.2% to 9.5%. Belarus, Estonia, Lithuania, Poland have implemented a more moderate redirection of the budget towards healthcare, increasing proportional expenditures by a factor of 1.26, 1.15, 1.21, and 1.21 respectively. In spite of public preferences, Armenia decreased the proportional share of the budget dedicated to healthcare by as much as 2.6 pp, Moldova, Russia, and Ukraine by 1.3 pp, and Latvia by 0.8 pp. Regardless of the direction of the trend, notwithstanding some slight convergence, no transition country spent as much of its budget on healthcare as Italy and Germany. The latter spent nearly two to four times as much on healthcare as a proportion of total expenditures compared to the studied transition countries, and this gap has been widening relative to all of those included in the analysis, apart from Georgia.

Figure 2: Public healthcare expenditures (% of GDP)

Source: WHO, 2020

While expenditures per capita are less indicative of government priorities in the budget, they are a better comparative measure for assessing the changes in healthcare provision, barring differences in efficiency. This comes with a huge caveat, namely that it is well established in the literature that additional healthcare expenditures often translate into “small to moderate” direct improvements in healthcare quality and outcomes due to inefficient spending or underlying factors (e.g. lifestyle choices, poverty) that are not addressed by investment in the healthcare system itself (Hussey et al, 2013; Self and Grabowski, 2003).  Nevertheless, this measure is more likely to translate to an improvement in the quality of care each person receives, and the data paints a more positive picture considering the clear preference of both men and women for higher spending. In Figure 3 we present healthcare expenditures per capita in USD, and apart from Italy and Ukraine, all of the countries have significantly increased spending between 2006 and 2017. While expenditures per capita in transition countries are dwarfed by Germany and Italy, Estonia, Georgia, and Lithuania have more than doubled their expenditures, and Armenia has more than tripled. Belarus, Latvia, Poland, Moldova, and Russia have also significantly increased their per capita spending on healthcare, by factors in the range of 1.54 and 1.91. However, while expenditures per capita is one indicator of improving healthcare quality, it does not identify government priorities and is largely dependent on overall economic growth (Fuchs, 2013; Bedir, 2016).

Figure 3: Health care expenditure per capita, USD

Source: WHO, 2020

In every country we include, increasing healthcare expenditure per capita is accompanied by advancements in many measures of healthcare outcomes for men and women. Between 2006-2017, life expectancy at birth increased across the board, with men in Russia experiencing the greatest improvement of 7.1 years (Figure 4a). These are promising trends – for women, life expectancy at birth improved by a larger margin in each transition country than in Germany or Italy, and the same can be said for men in every country apart from Armenia. Furthermore, the Healthcare Access and Quality (HAQ) index, which is composed of 32 indicators related to preventable causes of mortality, has improved across all 12 countries between 2005-2016. The change was most notable in Armenia, Belarus, Estonia, and Russia, constituting as much as 8.7, 10.2, 8.9, and 8.9 points out of a hundred, respectively (Figure 4b). These trends indicate convergence in the quality of healthcare as they significantly outpaced improvements in the HAQ index in Italy (3.1 points) and Germany (3.9 points). As of 2016, among the countries of interest, Georgia (67.1 points) and Moldova (67.4) had the lowest scores, while Germany (92.0) and Italy (94.9) scored highest, as could be expected based on healthcare spending measures presented in Figures 2 and 3.

Figure 4: 4a (left): Change in life expectancy, 2006-2017 / 4b (right): HAQ index

Source 4a: The World Bank (2020). Source 4b: Institute for Health Metrics and Evaluation (2018). Notes: The HAQ index is composed of 32 indicators, each related to a cause of death that is preventable with the proper healthcare. The scale ranges from 0 (worst) to 100 (best).

However, as presented in Figure 5, there is no clear relationship between the strength of the preference for additional healthcare spending and the scale of expansion in spending. Taking three of the four countries (Armenia, Belarus, and Russia) with the greatest improvement in the HAQ index as an example, there was virtually no change in healthcare spending as a percentage of GDP over the same period. These countries were also different in terms of how strong the preferences were for additional spending on healthcare as the first priority in 2006.

Figure 5: Public preferences and government healthcare spending (% of GDP)

Source: LiTS Wave I data (2006), The World Bank (2020). Notes: Germany and Italy were not included in the 2006 wave of the LiTS survey; thus, they are not shown here.

Conclusion

As we have demonstrated in this brief, in the ten post-communist countries for which we have analyzed LiTS data, there was a consistent and common preference for healthcare as the first priority for extra government spending between 2006 and 2016. We also find that in each country except Georgia, on average, women had a stronger preference for additional public healthcare spending, supporting a wealth of literature that suggests that women utilize healthcare services more frequently and spend more out of pocket on healthcare than men (Owens, 2008; Cylus et al, 2011; Williams et al, 2017). However, over the period we study, these preferences have not translated directly into a reallocation of budgetary resources. The countries with the strongest preferences for additional healthcare spending in 2006 did not experience the highest increases in any of the discussed measures of public healthcare expenditures since then.

People living in Italy and Germany chose an increase in public spending on healthcare as their first priority less frequently than residents of post-transition countries. Better understanding these differences requires further research, but there is likely a combination of factors that play into this effect. For one, wealthier Western countries performed better when looking at simple measures of healthcare outcomes such as life expectancy and deaths from non-communicable diseases (WHO, 2020), and hence other priorities may have gained in salience. Furthermore, they allocated a greater proportion of the public budget towards healthcare. This in part stems from the significant challenges associated with the transition following 1989. Healthcare systems in post-communist countries experienced a fiscal shock when joining the global economy, with the loss of centrally controlled price mechanisms causing an increase in the relative prices of healthcare inputs such as medicines and equipment (Obrizan, 2017). This was exacerbated by a shrinking capability of governments to spend more on healthcare related to the general economic shocks at that time and led to the passing over of costs to patients in the form of out-of-pocket expenses (Balabanova, et al. 2012).  Although access to healthcare and the quality of that care have improved after the transition (Romaniuk and Szromek, 2016), these have failed to converge towards Western European countries on a number of substantial measures up to this point. Before the commencement of the COVID-19 pandemic, government healthcare spending did not reflect the preferences of the public in any of the ten studied transition countries. The outbreak of the pandemic has not only intensified the pressure on the healthcare system but also brought about a number of negative economic consequences. This combination can be expected to simultaneously increase the strain on the public budget and necessitate difficult decisions of reallocation at a time when fiscal sustainability during a global recession is already being brought under question (Creel, 2020).

References

Note: Annex included in the attached PDF.

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Liberal Democracy in Transition – The First 30 Years

20191027 Liberal Democracy in Transition FREE Network Policy Brief Image 07

This year marks 30 years since the first post-communist election in Poland and the fall of the Berlin Wall. Key events that started a dramatic transition process from totalitarian regimes towards liberal democracy in many countries. This brief presents stylized facts from this process together with some thoughts on how to get this process back on a positive track. In general, the transition countries that joined the EU are still far ahead of the other transition countries in terms of democratic development.

The recent decline in democratic indicators in some EU countries should be taken seriously as they involve reducing freedom of expression and removing constraints on the executive, but should also be discussed in light of the significant progress transition countries entering the EU have shown during the first 30 years of transition. The brief shows that changes in a democracy can happen fast and most often happen around elections, so getting voters engaged in the democratic process is crucially important. This requires politicians that engage the electorate and have an interest in preserving democratic institutions. An important question in the region is what the EU can do to promote this, given its overloaded political agenda. Perhaps it is time for a Greta for democracy to wake up the young and shake up the old.

This brief provides an overview of political developments in transition countries since the first post-communist elections in Poland and the fall of the Berlin Wall 30 years ago. It focuses on establishing stylized facts based on quantitative indices of democracy for a large set of transition countries rather than providing in-depth studies of a small number of countries. The aim of the brief is thus to find common patterns across countries that can inform today’s policy discussion on democracy in the region and inspire future studies of the forces driving democracy in individual transition countries.

The first issue to address is what data to use to establish stylized facts of democratic development in the region. By now, there are several interesting indicators that describe various aspects of democratic development, which are produced by different organizations, academic institutions and private data providers. In this brief, three commonly used and well-respected data providers will be compared in the initial section before we zoom in on more specific factors that make up one of these indices.

The big picture

The three indicators that we look at first are: political rights produced by Freedom House; polity 2 produced by the Polity IV project; and the liberal democracy index produced by the V-Dem project. Figures 1-3 show the unweighted average of these indicators for two groups of countries. The EU10 are the transition countries that became EU members in 2004 and 2007 and include Bulgaria, the Czech Republic, Estonia, Hungary, Lithuania, Latvia, Poland, Romania, Slovakia, and Slovenia. The second group, FSU12, are the 12 countries that came out of the Soviet Union minus the three Baltic countries in the EU10 group, so the FSU12 group consists of Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan.

Figure 1. Freedom House

Source: Freedom House and author’s calculations
Note: Scale inverted, 1 is best and 7 worst score

Figure 2. Polity IV project

Source: Polity IV project and author’s calculations
Note: Scale from -10 (fully autocratic) to 10 (fully democratic)

Figure 3. V-Dem

Source: V-Dem project and author’s calculations
Note: Scale from 0 to 1 where higher is more democratic

All three indicators convey the message that the democratic transformation in the EU10 group was very rapid in the early years of transition and the indicators have remained at high levels since the mid-90s only to show some decline in the most recent years for two of the three indicators. The FSU12 set of countries have made much less progress in terms of democratic development and remain far behind the EU10 countries in this regard. Overall, there is little evidence at the aggregate level that the democratic gap between the EU10 and FSU12 groups is closing. While the average EU10 country is more or less a full-fledged democracy, the average FSU12 country is at the lower end of the spectrum for all three democracy measures.

The average indicators in Figures 1-3 obviously hide some interesting developments in individual countries and in the following analysis, we will take a closer look at the liberal democracy index at the country level. We will then investigate what sub-indices contribute to changes in the aggregate index in the countries that have experienced significant declines in their liberal democracy scores.

For the first part of the analysis, it is useful to break down the democratic development in two phases. The first phase is from the onset of transition (1989, 1991 or 1993 depending on the specific country) to the time of the global financial crisis in 2009 and the second phase is from 2009 to 2018 (the last data point).

Figure 4. Liberal democracy, the first phase

Source: V-Dem project and author’s calculations

Figures 4 and 5 compare how the liberal democracy indicator changes from the first year of the period (measured on the horizontal axis) to the last year of the period (on the vertical axis). The smaller blue dots are the individual countries that make up the EU10 group while the red dots are the FSU12 countries. The 45-degree line indicates when there is no change between start and end years, while observations that lie below (above) the line indicate a deterioration (improvement) of the liberal democracy index in a specific country.

In the first phase of transition (Figure 4), all of the EU10 countries increased their liberal democracy scores and the average increase for the group was almost 0.5, going from 0.26 to 0.74. This was a result of many of the countries in the group making significant improvements without any countries deteriorating. The FSU12 group had a very different development with the average not changing at all since the few countries that improved (Georgia and Ukraine) were counterbalanced by a significant decline in Belarus and a more modest decline in Armenia.

Figure 5. Liberal democracy, the second phase

Source: V-Dem project and author’s calculations

The very rapid improvement in the liberal democracy index in the EU10 countries in the first phase of transition came to a halt and also reversed in several countries in the second phase of transition. Of course, as they had improved so much in the first period, there was less room for further positive developments, but the rapid decline in some of the countries was still negative news. However, it does point towards that reform momentum was very strong in the EU accession process, but once a country had entered the union, the pressure for liberal democratic reforms has faded.

Overall, the EU10 average fell by 0.1 from 2009 to 2018. This was a result of declining scores in several countries. The particularly large declines in this period have been seen in Hungary (-0.28), Poland (-0.27), Bulgaria (-0.14), the Czech Republic (-0.14), and Romania (-0.12). Again, the average FSU12 score did not change much, although Ukraine (-0.2) put its early success in reverse and lost as much in this period as it had gained earlier.

Country developments

Since much of the current discussion centers on how democracy is being under attack, the figures name the countries that have seen significant declines in the liberal democracy score in the first or second phase of transition. Figures 6 and 7 show the time-series of the liberal democracy index in the countries with significant drops at some stage of the transition process.

Figure 6. FSU12 decliners

Source: V-Dem project and author’s calculations

In many countries, the drop comes suddenly and sharply, with the first and most prominent example being Belarus. There, it only took three years to go from one of the highest ranked FSU12 countries to fall to one of the lowest liberal democracy scores. In Poland, Romania, Bulgaria and Armenia, the process was also very rapid and significant changes happened in 2-3 years.

Figure 7. EU10 decliners

Source: V-Dem project and author’s calculations

In the Czech Republic and Hungary, the period of decline was much longer and in the case of Hungary, the drop was the most significant in the EU10 group. Ukraine stands out as more of an exception with a roller-coaster development in its liberal democracy score that first took it up the list and then back down to where it started. For those familiar with politics in these countries, it is easy to identify the elections and change in government that have occurred at the times the index has started to fall in all of these countries. In other words, the democratic declines have not started with coups but followed election outcomes where in most cases the incumbent leaders have been replaced by a new person or party.

How democracy came under attack

We will now take a closer look at what has been behind the instances of decline in the aggregate index by investigating how the sub-indices have developed in these countries. The sub-indices that build up the liberal democracy index are: freedom of expression and alternative sources of information; freedom of association; share of population with suffrage; clean elections; elected officials; equality before the law and individual liberty; judicial constraints on the executive; and legislative constraints on the executive (the structure is a bit more complex with mid-level indices, see V-Dem 2019a).

Table 1 shows how these indicators have changed in the time period the liberal democracy indicator has fallen significantly (with shorter versions of the longer names listed above but in the same order). The heat map of decline indicated by the different colours is constructed such that positive changes are marked with green, smaller declines are without colour, declines greater that 0.1 but smaller than 0.2 are in yellow and larger declines in red. Note that the liberal democracy index is not an average of the sub-indices but based on a more sophisticated aggregation technique (see V-Dem 2019b). Therefore, the Czech Republic and Bulgaria can have a greater fall in top-level liberal democracy index that what is indicated by the sub-indices.

Table 1. Changes in liberal democracy indicators at times of democratic decline

Source: V-Dem project and author’s calculations

For the countries with the largest changes in the liberal democracy index, it is clear that both freedom of expression and alternative sources of information have come under attack together with reduced judicial and legislative constraints on the executive. Among the EU10 countries, Hungary and Poland stand out in terms of reducing freedom of expression, while Romania has seen most of the decline coming from reducing constraints on the executive. Not surprisingly, Belarus stands out in terms of the overall decline in liberal democracy coming from reducing both freedom of expression and constraints on the executive in the most significant way.

On a more general level, the attack on democracy does differ between the countries, but in the cases where serious declines can be seen, the attack has been particularly focused on information aspects and constraints on the executive. At the same time, all countries let all people vote (suffrage always at 1) and let the one with the most votes get the job (elected officials).

Policy conclusions

This brief has provided some stylized facts on the first 30 years of liberal democracy in transition and some details on how democracy has come under attack in individual countries. It leaves open many questions that require further studies and some of these are indeed ongoing in this project and will be presented in future briefs and policy papers here.

Some observations have already been made here that can inform policy discussions on liberal democratic developments in the region. The first is that changes can happen very rapidly, both in terms of improvements but also in terms of dismantling important democratic institutions, including those that provide constraints on the executive or media that provides unbiased coverage before and after elections. What is also noteworthy is that these changes have almost always happened after an election where a new person or party has come to power, so the democratic system is used to introduce less democracy in this sense.

It is also interesting that in all of the countries, the most easily observed indicators of democracy such as suffrage and having the chief executive or legislature being appointed by elections are given the highest possible scores. In other words, even the most autocratic regime wants to look like a democracy; but as the old saying goes, “it is not who votes that is important, it is who counts”.

The regime changes at election times that have led to declining liberal democracy scores have also in many cases come as a result of the incumbents not doing a great job or voters not turning up to vote. It was enough for Lukashenko in Belarus to promise to deal with corruption and rampant inflation that was a result of the old guard’s mismanagement to turn Belarus into an autocracy. In Hungary, the change of regime came after the Socialist leader was caught on tape saying he had been lying to voters. While in Romania, only 39% voted in the 2016 election. And in Bulgaria, around half of the voters stayed at home in the presidential election the same year.

In sum, both incompetent and corrupt past leaders and disengaged or disillusioned voters are part of the decline in a liberal democracy that we have seen in recent years. It is clearly time for policy makers that are interested in preserving liberal democracy in the region and elsewhere to think hard about how democracy can be saved from illiberal democrats. Part of the answer clearly will have to do with how voters can be engaged in the democratic process and take part in elections. It also involves defending free independent media and the thinkers and doers that contribute to the liberal democracy that we cherish. The question is if the young generation will find a Greta for democracy that can kick-start a new transition to liberal democracy in the region and around the world.

For those readers that want to participate more actively in this discussion and have a chance to be in Stockholm on November 12, SITE is organizing a conference on this theme which is open to the public. For more information on the conference, please visit SITE’s website (see here).

References

  • Freedom house data downloaded on Oct 4, 2019, from https://freedomhouse.org/content/freedom-world-data-and-resources
  • Freedom house methodological note available at https://freedomhouse.org/report/methodology-freedom-world-2018
  • Polity IV project data downloaded on Oct 4, 2019, from http://www.systemicpeace.org/inscrdata.html
  • Polity IV project manual available at http://www.systemicpeace.org/inscr/p4manualv2018.pdf
  • V-Dem project data downloaded on Sept 24, 2019, from https://www.v-dem.net/en/data/data-version-9/
  • Coppedge, Michael, John Gerring, Carl Henrik Knutsen, Staffan I. Lindberg, Jan Teorell, David Altman, Michael Bernhard, M. Steven Fish, Adam Glynn, Allen Hicken, Anna Lührmann, Kyle L. Marquardt, Kelly McMann, Pamela Paxton, Daniel Pemstein, Brigitte Seim, Rachel Sigman, Svend-Erik Skaaning, Jeffrey Staton, Steven Wilson, Agnes Cornell, Lisa Gastaldi, Haakon Gjerløw, Nina Ilchenko, Joshua Krusell, Laura Maxwell, Valeriya Mechkova, Juraj Medzihorsky, Josefine Pernes, Johannes von Römer, Natalia Stepanova, Aksel Sundström, Eitan Tzelgov, Yi-ting Wang, Tore Wig, and Daniel Ziblatt. 2019a. “V-Dem [Country-Year/Country-Date] Dataset v9”, Varieties of Democracy (V-Dem)
  • Pemstein, Daniel, Kyle L. Marquardt, Eitan Tzelgov, Yi-ting Wang, Juraj Medzihorsky, Joshua Krusell, Farhad Miri, and Johannes von Römer. 2019b. “The V-Dem Measurement Model: Latent Variable Analysis for Cross-National and Cross-Temporal Expert-Coded Data”, V-Dem Working Paper No. 21. 4th edition. University of Gothenburg: Varieties of Democracy Institute.

Gender Gaps in Transition – What do we learn (and what do we not learn) from gender inequality indexes?

20181112 Gender Gaps in Transition Image 01

We look at the development of gender inequality in transition countries through the lens of the Gender Inequality Index (GII), which aims to capture overall gender inequality. By extending the measure back to 1990, we show that even though gender inequality in transition countries for the most part has decreased since the fall of the iron curtain, once overall development is taken into account, transition countries did better in relation to other countries in terms of rank differences before transition. We, however, caution against relying exclusively on composite indexes to understand patterns of gender inequality. While the desire of policy makers to get one number that captures gender inequality development is understandable, weak correlations across different overall indexes, as well as across different sub-indexes that make up each index, suggest that such an approach has limitations.

Indexes of gender inequality

In the public debate of socio-economic issues there is an understandable interest in single measures that summarize complex issues, describe historical developments and allow international comparisons. The use of GDP to measure economic development is the most immediate example of this way of proceeding. The same applies to gender inequality. Over the past decades a number of “gender equality indexes” have been developed by international organizations such as the UNDP, the EIGE (European Institute for Gender Equality) and the WEF (World Economic Forum), to name a few. These measures receive a lot of attention and in particular the reporting of country rankings tends to have an influence on political and policy discussions.

In this brief, we study the development of the Gender Inequality Index (GII) in transition countries, contrasting these to Western European countries.  By transition countries, we refer to all countries that were part of the Soviet Union plus the Central and Eastern European countries that were heavily influenced by the Soviet Union before 1990 (not including Albania and former Yugoslavia). Whenever we have been able to find the underlying data, we extend the GII measure back to the early 1990s. This extension allows us to measure the development of gender inequality through the lens of a single index since the beginning of the transition. We then discuss what the GII tells us about gender inequality in transition, but also – perhaps more importantly – what it does not tell us. Our analysis is discussed as well as shown in some more detail in our forthcoming companion FREE Policy Paper.

The Gender Inequality Index

The GII was reported for the first time in the 2010 Human Development Report. It measures gender inequalities in three dimensions of human development: 1) reproductive health, measured by maternal mortality and adolescent birth rates; 2) empowerment, measured by representation in parliament and secondary education among adults; and 3) economic status, measured by labor force participation.

GII country-values from 1995 are available on the UNDP website.  Conveniently for our purpose, most of the underlying data that the index is based on are also made available from the UNDP for the years 1990, 1995, 2000, 2005, and every year between 2010 and 2015, with the only exception of the female seat share in Parliament in 1990. Using the UNDP data, and data on the female seat share in Parliament in 1990 from additional sources (see the FREE Policy Paper for a list of sources), we obtain values for the GII from the beginning of the transition in 1990 until 2015.

What does the GII index tell us about gender equality in transition economies?

Figure 1 reports values for the GII index in box plots, which show the index 25th and 75th percentile (respectively bottom and top of the box), its median (horizontal line in the box), its maximum and minimum (whiskers), and outliers (dots) for two groups of countries: transition countries and Western-European countries. We have reconstructed the values of the GII index for a limited set of countries within these groups (see the note to Figure 1 for the list of countries). When interpreting Figure 1, recall that higher GII values imply more inequality.

Figure 1. The Gender Inequality Index in transition countries and Western Europe, 1990-2015

Nov122018_Figure1

Source: Own calculations based mainly on UNDP data. The transition countries are: Armenia, Bulgaria, Georgia, Hungary, Poland, Romania, and the Russian Federation. For Western Europe the countries are: Austria, Belgium, Cyprus, Denmark, Finland, France, Greece, Iceland, Italy, Luxembourg, Malta, the Netherlands, Norway, Portugal, Spain, Sweden, and Switzerland.

Figure 1 shows that based on the GII, median gender inequality is larger in transition countries than in Western Europe and has been so throughout the entire period since 1990. In both regions, the index shows a decreasing trend, after an initial increase in 1995 in the transition countries. As we show in the Policy Paper, this decrease is mainly due to a drop in female representation in national parliaments. The variance of the index scores has declined over time in Western Europe, while it remained mostly unchanged in the transition countries.

The evidence from the GII is somewhat at odds with the common notion that transition countries enjoy relatively low level of gender inequality. However, it is important to notice that transition and Western European countries are generally at different levels of development. Figure 2 displays the country groups’ performance in relation to their level of human development. This is done by measuring the difference between their GII ranking and their Human Development Index ranking (HDI) among all the countries with non-missing GII values in the years considered. The HDI is an UNDP-developed measure of overall human development. See the policy paper for details about its measurement. The larger the difference between GII- and HDI-ranking, the worse the group performance in terms of gender inequality in relation to its level of development.

Figure 2. Difference between Gender Inequality Index ranking and Human Development Index ranking in transition countries and Western Europe, 1990-2015

Nov122018_Figure2

Source: Own calculations based mainly on UNDP data.

The trends between transition countries and Western Europe are now opposite. In 1990, the median standing in terms of gender inequality was better than that in human development for transition countries, and the relative level of gender inequality was lower than in Western Europe. The (negative) difference between GII and HDI ranking however appears to have narrowed over time, and it is close to zero in 2015. Western European countries have instead improved their gender equality ranking in relation to their ranking in terms of human development over the period studied. Put differently, the ranking improvement in terms of human development in former socialist countries since the transition have not translated into comparable gains in gender equality ranking as measured by the GII index.

It is also important to emphasize that, according to several scholars, a dichotomy in terms of gender relations existed in transition countries during the socialist period. This is because on one hand the socialists put substantial into effort to empower women economically (see e.g. Brainerd, 2000; Pollert, 2003; Campa and Serafinelli, 2018), but on the other hand they failed to eliminate patriarchy (LaFont, 2001). This suggests that a composite index can mask important contrasting patterns among its components. In the Policy Paper we uncover such contrasting patterns. By looking separately at the different components of the GII index, we show that while Western European countries have invariantly improved their levels of gender equality since 1990, the trend in transition countries depends on the measure one looks at: Women maintained, but did not improve, their relative status in the labor force. They gained more equality in education and especially in terms of reproductive health, and lost descriptive political representation.

Conclusion

In this policy brief we have studied the development of gender inequality in transition countries through the lens of the Gender Inequality Index, whose span we have extended to the beginning of the transition period. We have shown that, based on this index, gender inequality has decreased since 1990 in transition countries, a trend which is common to that in Western Europe. However, once the changes in overall development during this period are taken into account, it appears that transition countries fared better in 1990 than today. Our analysis thus shows that analyzing gender inequality indexes in absolute terms and in relation to levels of development can deliver different conclusions. The factors that account for these differences should be kept in mind in policy discussions and policy-making. Some issues related to gender inequality, such as maternal mortality, are potentially addressed with a comprehensive strategy aimed at overall development. Conversely, other drivers of gender inequality, such as women’s political empowerment, do not necessary go hand in hand with overall development, and might therefore require more targeted policy interventions.

We have also cautioned the reader about the limitation of using comprehensive indexes to describe developments in gender inequality. A comprehensive index can overshadow important sources of gender inequality if it is composed of sub-indexes that move in opposite directions. This point can be especially relevant in the context of transition countries, which historically experienced a top-down approach to gender equality, the results of which in the long-term appear to be major advancements in some dimensions of women’s empowerment and contemporary potential backlash in other dimensions. It has been argued, for instance, that low levels of female representation in political institutions in transition countries can be the result of women’s large participation in the labor market while the division of roles in households remained traditional. In the words of anthropologist Suzanne LaFont (2001), “Women have been and continue to be overworked, and their lives have been over-politicized, the combination of which has led to apathy and/or the unwillingness to enter the male dominated sphere of politics. Many post-communist women view participation in politics as just one more burden”. In such a context, average values of an index of gender equality might mask high achievements in economic empowerment coexisting with lack of political representation.

References

  • Brainerd, E. (2000), ‘Women in Transition: Changes in Gender Wage Differentials in Eastern Europe and the Former Soviet Union’, Industrial and Labour Relations Review, 54 (1), pp. 138-162.
  • Campa, P. and Serafinelli, M. (2018), ’Politico-economic Regimes and Attitudes: Female Workers under State-socialism’, Review of Economics and Statistics, Forthcoming.
  • LaFont, Suzanne (2001), ‘One step forward, two steps back: women in the post-communist states.’ Communist and post-communist studies 34(2), pp. 203-220.
  • Pollert, A. (2003), ‘Women, work and equal opportunities in post-Communist transition’, Work, Employment and Society, Volume 17(2), pp. 331-357.

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Stylized Facts from 25 Years of Growth in Transition

20180226 Stylized facts from 25 years of growth Image 01

This brief summarizes the growth experience of transition countries 25 years after the dissolution of the Soviet Union. We divide our sample into two main groups: the 10 transition countries in Eastern Europe and the Baltics that became EU members in 2004 and 2007 (EU10); and the 12 countries (ex Baltics) that emerge from the Soviet Union (FSU12). The growth experiences of these two groups have been distinctly different. The magnitude of the initial transition decline in output was much more severe in the FSU12 group. Despite growing almost 2 percentage points faster than the average EU10 for the following fifteen years, the FSU12 group is still further behind the EU10 group than they were at the beginning of transition. This illustrates how hard it is for countries to recover from large negative income shocks and thus the importance for countries to avoid such negative events. However, there are no signs of transition countries being stuck in a low or middle-income trap or that natural resource wealth leads to lower growth during this period.

2017 marked the 25-years anniversary after the dissolution of the Soviet Union and the beginning of the transition for the economies in the region. In a recent paper, we explore the growth experience of transition countries over these 25 years (Becker and Olofsgård, 2017). The paper has four main parts: an overview of the transition literature focusing on growth; a part that provides a detailed description of growth in transition; an analytical section that investigate if we can explain growth in transition countries with a standard growth model; and finally an exploration of whether institutional and other variables that have been highlighted in the transition literature (but are excluded from the basic growth model) are correlated with growth in transition countries. This brief summarizes the descriptive part of the paper, while the more analytical sections will be the topic of future briefs.

For most of the paper, we divide our sample into two main groups; the 10 transition countries in Eastern Europe and the Baltics that became EU members in 2004 and 2007 (EU10); and the 12 countries that emerged from the Soviet Union (FSU12). In addition, we include three transition countries that are not part of either group (Croatia, Albania and Macedonia – Other3) and we also divide the FSU12 group into the four countries that export significant amounts of fuel (FSUF) and the eight countries that do not (FSUNF). There are of course remaining differences within these groups, but this aggregate analysis allows us to see certain patterns in the transition process more clearly.

Initial output collapses

The focus in economics is often on how to generate higher growth and not about protecting against significant drops in output. There are some exceptions, including Becker and Mauro (2006) and Cerra and Saxena (2007), where the focus is on output losses and how countries recover after crises. For transition countries, a very important feature of the economic development process is exactly the initial drop in income and the time it has taken countries to recover from the initial phase of transition. Table 1 shows how much income fell in the different country groups and the time it took to get back to the pre-transition income level.

Table 1. Output drops and recoveries

Source: Becker and Olofsgård (2017)

The initial collapse in the FSU12 group was enormous, with income cut in half. The EU10 countries also had massive output losses, but “only” lost a quarter of their income on average. This took over a decade to recover from, while the path back to pre-transition income levels in the average FSU12 country was almost twice as long. There have been many papers written on the economic chaos that was part of the initial transition process, and explanations for this decline has been attributed to, e.g., misleading data, lack of functioning markets, shock therapy and poor economic and legal institutions in general. All of these factors have likely played important roles in the process, but regardless of the explanation, this was a very unfavorable time in terms of economic outcomes for hundreds of millions of people in these countries. Avoiding such costly drops in output should be a top priority for economic policy makers in any country at all times, not just in transition.

From collapse to growth

In most transition countries, the initial phase of decline in transition lasted several years, but eventually the negative growth rates turned positive (Figure 1). Again, we can see that the EU10 group had fewer years of declining incomes with growth resuming in 1993, while for the FSU12 group, growth in transition only started in 1996/7.

Figure 1. Bust-Boom countries

Source: Becker and Olofsgård (2017)

What is less visible in Figure 1 due to the wide scale needed to capture the initial output drops is that the FSU12 groups has shown significantly higher growth than the EU10 group in the last 15 years. Over the more recent period, the average FSU12 country has grown by close to 6 percent, while growth for the EU10 has been around 4 percent per annum (Table 2).

Table 2. Real GDP/cap growth

Source: Becker and Olofsgård (2017)

The faster growth in FSU12 countries is particularly pronounced among the fuel exporters, which were growing by one and a half percentage point faster than the non-fuel exporters between 2000 and 2015. But the table also shows that the very negative growth experience during the first ten years of transition is hard to erase and the EU10 countries have grown faster over the full 25-year period compared to the FSU12 countries. In terms of understanding the growth experience of the different country groups and time periods, it is clear that the sharp increase in international oil prices during the last 15 years of the period generated high growth in the fuel exporting countries in the FSU12 group. Interestingly though, also the non-fuel exporters grew faster than the EU10 in this time period. This is likely linked to spillovers from Russia to the other countries in the region, but could also be related to some recovering after the massive initial declines in output. Such macro and external factors are not always stressed in discussions of growth in transition countries, which more often focus on the pace of reforms or strength of institutions, but seem to be relevant at this aggregate level when comparing the initial and later phases of transition.

Relative incomes in transition countries

Growth or the lack thereof is of importance in determining income levels, which is what we generally think is what influences welfare. The question is then what the growth processes we have analyzed imply for income levels in transition countries, and in particular, how the income levels in these countries compare with other countries.

Figure 2. Income relative to 15 old EU countries

Source: Becker and Olofsgård (2017)

The short story here is that the relative ranking of the different groups is largely unchanged from the start of transition until the end of 2015. The group of countries that eventually joined the EU has the highest income level while the non-fuel exporting FSU countries have the lowest. However, the leading group still only has around 60 percent of the income of the average “old” EU country while the average FSU12 country has half of that or around 30 percent of the income of the old EU countries. This puts the relatively high growth rates of the FSU12 group over the last 15 years in perspective; the road to reach old EU level incomes is long indeed. Also, within the FSU group, it is clear that there is a sharp dividing line between the fuel exporters and the rest. This is in stark contrast to the notion of a “natural resource curse” that is often blamed for poor growth in oil and mineral rich countries.

Growth traps in transition?

One issue that comes up with regards to both low and middle-income countries is if they are stuck at a certain level in the relative income rankings of the world. This is referred to as the low or middle-income trap and the question is if there are signs of transition countries being stuck in such traps.

Figure 3. Moving up the income ladder

Source: Becker and Olofsgård (2017)

Figure 3 shows how transition countries are classified into the World Banks income groups low income (1 in the Figures scale), lower middle income (2), higher middle income (3) and high income (4) groups.

It is clear that the FUS 12 group of countries was sliding down the scale initially, but since the beginning of the 2000’s, all of the transition countries have been climbing up the World Bank income ranking scale without any apparent signs of a low or middle-income trap.

Policy conclusions

There are of course country differences along all the dimensions discussed in this brief but grouping the transition countries together provides some interesting general observations of growth in transition. First of all, it is clear that it is very hard to fully recover from large drops in income. Even with the help of some extra growth following a crisis, it seems to take a long time for most countries to make up for lost ground. This suggests that policy makers in transition as well as other countries need to take measures to hedge the really bad outcomes and not only focus on how to generate an extra one percent of growth.

The other observation is that at the aggregate level, external factors and more mechanical macro boom-bust-boom type of growth factors may dominate what we generally think of as the long-run determinants of growth (such as institutions, education, and micro level reforms to make markets work better) over very long time spans. This does not mean that the focus on the more fundamental growth drivers should diminish, but it is important that reforms in these areas are complemented with a macroeconomic framework that reduces the risks of costly output collapses.

Finally, it is clear that the incomes generated by natural resources can produce growth at the macro level and that there is little evidence that transition countries should be stuck at any particular level in the global income rankings. Go transition countries!

References

  • Becker, T, and A. Olofsgård (2017), “From abnormal to normal—Two tales of growth from 25 years of transition”, SITE Working paper 43, September.
  • Becker, T., and P. Mauro, (2006). “Output Drops and the Shocks That Matter”. IMF Working Papers 06/172.
  • Cerra, V., and S.C. Saxena (2008). ”Growth Dynamics: The Myth of Economic Recovery”. American Economic Review, 98(1), 439–457.

Cross-Country Differences in Convergence in CESEE

An image of cars travelling up and down the highway next to tall buildings representing convergence in CESEE

Since 1989, there have been large differences in the convergence of the income levels of the former communist countries in CESEE with those in the US. Most Central European countries have seen a sharp rise in relative incomes, but many countries in former Yugoslavia and the CIS have not—indeed, some countries, including Moldova and Serbia, are now poorer than they were in 1989 (Figure 1).

Figure 1. Transition outcomes

01 Figure Transition outcomes. Cross-Country Differences in Convergence in CESEE. FREE Policy paper

Source: Total Economy Database and IMF staff calculations.

Figure 2. GDP level in Poland and Ukraine

02 Figure GDP level in Poland and Ukraine. Cross-Country Differences in Convergence in CESEE. FREE Policy paper

Source: Total Economy Database and IMF staff calculations.

The difference between Ukraine and Poland is particularly stark. In 1989, both had similar income levels, but Poland is now more than three times as rich (Figure 2). As a result, cross-country income differences in CESEE remain large. In 1989, the Czech Republic, Russia, Slovenia and Croatia had the highest income per capita in 1989, about 4 times as high as in Albania and Moldova, the poorest in the group. Twenty-six years later, the differences are even larger. GDP per capita in Slovenia is 6 times as high as in Moldova (Figure 3).

Figure 3. Cross-country income differences

03 Figure. Cross-country income differences. Cross-Country Differences in Convergence in CESEE. FREE Policy paper

Source: Total Economy Database and IMF staff calculations.

 What Explains Convergence Differences?

These differences in convergence do not seem to reflect data problems. True, GDP statistics in 1989 were not very good. It is hard to measure value added when prices are not quite right. Moreover, GDP at that time was probably not a good indicator or of consumer welfare. Much of what was produced was not wanted by consumers (e.g. military expenditures) and/or of low quality. Nevertheless, these issues apply to all post-communist countries in the regions—it is not clear that some countries suffered from data problems more than others.

Indeed, more direct measures of economic activity also suggest large initial output falls and large cross-country differences. Between 1990 and 1995 electricity consumption per capita fell by almost 40 percent in Ukraine and Moldova. By then electricity consumption in Poland had nearly recovered to the 1990 level (Figure 4).

Figure 4. An alternative measure of decline in economic activity

04 Figure. Alternative measure of decline in economic activity. Cross-Country Differences in Convergence in CESEE. FREE Policy paper

Source: IFA Statistics and IMF staff calculations.

Instead, several factors seem to have a played a role:

  • The speed of transition to a market economy
  • War and conflicts
  • Boom-busts
  • EU Membership
  • Whether transition has been completed

Countries that reformed early had a shorter and shallower post-transition recession. The lower the EBRD transition index in 1995 (i.e., the less the economy was reformed), the sharper the output decline between the beginning of the transition and 1995 (Figure 5).

Figure 5. Market reforms and post-transition recession

05 Figure. Market reforms and post-transition recession. Cross-Country Differences in Convergence in CESEE. FREE Policy paper

Source: Total Economy Database and IMF staff calculations.

Why was this? In late 1989, a fierce debate broke out over what came to be called gradualism versus shock therapy. Many gradualists argued that the structural flaws of the economy would frustrate attempts at liberalization, and therefore that reforms should be implemented in a gradual, sequenced way. But for others—including key figures such as Leszek Balcerowicz in Poland—understanding the nature of the problem meant the opposite: reform was a seamless web that could only succeed if all the changes happened together, because liberal prices, improved governance, and a stable economic and financial environment were needed to reinforce one another; little could be achieved with a partial reform. The evidence from the past 25 years has vindicated the seamless web theory of transition. There is no doubt that some reforms took much longer than anticipated, including privatization, both of banks and companies. But it seems clear that the countries that made sweeping changes, and that kept at reform and stabilization have done well.[2] Countries that followed a more gradual path suffered from the decline of the old industries and did not get the boost from the growth of new firms. And in some countries bouts of macroeconomic instability repeatedly undermined reforms and sapped political momentum.

Weaker growth in the early transition years was not compensated by faster growth later. Countries, where output declines were deeper in early 1990s, did not see more rapid growth in subsequent years (Figure 6).

Figure 6. Permanent output losses in the early transition

06 Figure. Permanent output loses in early transition. Cross-Country Differences in Convergence in CESEE. FREE Policy paper

Source: Total Economy Database and IMF staff calculations.

Wars and conflicts also played an important role. It is striking that the five countries with the lowest growth all had a war or serious conflict between 1990 and 2015 (Figure 7).

Figure 7. Wars and conflicts impact on long-term growth

07 Figure. Wars and conflicts impact on long-term growth. Cross-Country Differences in Convergence in CESEE. FREE Policy paper

Source: Total Economy Database and IMF staff calculations.

Avoiding boom-busts helped boost longer-term growth. Steady growth rates seem to be more conducive to higher long term growth than booms followed by busts. Between 2002 and 2008, Romania had capital inflows fueled boom and grew much faster than Poland, but thereafter it suffered a deep bust, and between 2002 and 2015, Poland has grown faster (Figure 8).

Figure 8. The hare and the tortoise

08 Figure. The hare and the tortoise. Cross-Country Differences in Convergence in CESEE. FREE Policy paper

Source: Total Economy Database and IMF staff calculations.

EU accession was a powerful catalyst for reforms and upgrading of institutional frameworks. CESEE countries that joined the EU were required to bring their regulations and institutions up to Western European standards. There is a striking difference in the level of EBRD transition indicators between EU countries and non-EU countries (Figure 9).

Figure 9. EU accession as a reform catalyst

09 Figure. EU accession as reform catalyst. Cross-Country Differences in Convergence in CESEE. FREE Policy paper

Source: EBRD and IMF staff calculations.

Thus, prospects of EU Membership have led to more reforms and, as a consequence, to stronger growth (Figure 10).

Figure 10. Market reforms and changes in income levels

10 Figure. Market reforms and changes in income levels. Cross-Country Differences in Convergence in CESEE. FREE Policy paper

Source: EBRD, Total Economy Database and IMF staff calculations.

Countries that upgraded their institutions to EU standards saw a decline in cross-country income differences. Countries that joined the EU in 2000s show clear pattern of convergence. The difference between Bulgaria and Slovenia has narrowed by 15 percent of Slovenia’s GDP since the former begun EU accession negotiations in 2000 (Figure 11, right panel). Similarly, a group of candidate and potential candidate countries, including Croatia (which joined the EU only in 2013) have converged as well (Figure 11, left panel).

Figure 11. Convergence within CESEE regions

11 Figure. Convergence within CESEE regions. Cross-Country Differences in Convergence in CESEE. FREE Policy paper

Source: Total Economy Database and IMF staff calculations. Note: The EU has recognized Bosnia and Herzegovina as potential EU candidate countries.

By contrast, there was no convergence among the European CIS-countries. Russia, the richest of CIS countries grew by only 0.6 percent annually since 1989, while output per capita declined in Moldova and Ukraine. Only Belarus achieved growth rates comparable to non-CIS countries, but its largely unreformed economy may have approached the limits of the current extensive growth model (Figure 12).

Figure 12. Convergence in the European CIS region

12 Figure. Convergence in European CIS region. Cross-Country Differences in Convergence in CESEE. FREE Policy paper

Source: Total Economy Database and IMF staff calculations.

Countries that have a more completed transition are richer. There is a strong correlation between progress in market reforms and a country’s income level (Figure 13).

Figure 13. Market reforms and income level

13 Figure. Market reforms and income level. Cross-Country Differences in Convergence in CESEE. FREE Policy paper

Source: EBRD, Total Economy Database and IMF staff calculations.

Similarly, richer countries have a more vibrant private sector (Figure 14).

Figure 14. Market reforms and private sector share in the economy

14 Figure. Market reforms and private sector share in the economy. Cross-Country Differences in Convergence in CESEE. FREE Policy paper

Source: EBRD, Total Economy Database and IMF staff calculations.

Correlation does of course not mean causality but is it telling that there is no highly reformed poor country.

Convergence Post-2009 Crisis

Post-2009, catch-up has slowed down. Pre-crisis, convergence was rapid and widespread. In some countries, the GDP per capita gap to the US narrowed by more than 12 percentage points in 2003-08. Since 2010 only two-thirds of countries in the region have continued to catch-up with the US, while Ukraine and Slovenia saw a widening of income differences (Figure 15). And if we include the 2009 crisis, which was deeper in CESEE than in Western Europe, convergence has been even less.

Figure 15. Convergence pace pre- and post-crisis

15 Figure. Convergence pace pre- and post-crisis. Cross-Country Differences in Convergence in CESEE. FREE Policy paper

Source: WEO database and IMF staff calculations.

More recently, there have also been large differences across regions: while the CIS was in recession, the non-CIS countries doing much better.

  • The CIS countries suffered from falling commodity prices, and from the impact of sanction on Russia.
  • By contrast, the non-CIS countries saw a gradual acceleration of GDP growth, on the back of a pick-up of domestic demand in the euro area. Labor markets in many EU New Member States (NMS) are tightening rapidly, and unemployment is quickly approaching pre-crisis lows, though GDP growth rates are well below those in the pre-crisis years.

How can we boost Convergence going forward?[3]

GDP per capita is the product of GDP per worker (labor productivity) and the share of the population that works (the employment rate):

15.2 Formula calculation

Low GDP per capita can thus be the result of both low labor productivity and a low employment rate. In CESEE, both factors play a role:

  • In most CESEE countries, the employment rate is below that in Western Europe (Figure 18). Low employment rates are a particular problem in SEE and some CIS countries.
  • The labor productivity gap with Western Europe is still large, even though it has declined in the past twenty years.

Figure 16. Big differences in growth among regions

16 Figure. Big differences in growth among regions. Cross-Country Differences in Convergence in CESEE. FREE Policy paper

Source: WEO database and IMF staff calculations.

Figure 17. Labor markets in EU new member states

Figure 17. Labor markets in EU new member states. Cross-Country Differences in Convergence in CESEE. FREE Policy paper

Source: Eurostat.

Figure 18. Labor utilization and productivity

18 Figure. Labor utilization and productivity. Cross-Country Differences in Convergence in CESEE. FREE Policy paper

Source: Total Economy Database, UN population statistics and IMF staff calculations.

To raise labor productivity more investment is needed.  The capital stock per worker in a typical CESEE economy is only about a third of that in advanced Europe. Domestic saving rare are too low in most the region; policies should, therefore, focus on institutional reforms that reduce inefficiencies and increase returns on private investment and savings.

Boosting total factor productivity (TFP) is important as well. CESEE countries have to address structural and institutional obstacles that prevent efficient use of available technologies or lead to an inefficient allocation of resources. The recent IMF CESEE report suggests the largest efficiency gains are likely to come from improving the quality of institutions (protection of property rights, legal systems, and healthcare); increasing the affordability of financial services (especially for small but productive firms), and improving government efficiency.

Conclusion

Since the fall of communism, there have been large differences in the convergence of income levels with the US among CESEE countries. Much of these differences reflect differences in policies. Countries that reformed more and earlier saw faster growth than countries that reformed less or later. Macro-stability also helped, and countries that avoided boom-busts tended to grow faster.

Continued convergence will require a higher investment, higher TFP, and higher employment rates. The capital stock per worker is still below that in Western Europe. Higher investment rates will require higher saving rates, lest large current account deficits emerge anew. Addressing structural and institutional obstacles would also help convergence, as it will support higher labor force participation and allow for a more efficient allocation of resources.

Notes and References

  • [1] Bas B. Bakker is the Senior Resident Representative and Krzysztof Krogulski an economist in the IMF’s Regional Office for Central and Eastern Europe in Warsaw. The views expressed in this paper are those of the author(s) and do not necessarily represent the views of the IMF, its Executive Board, or IMF management.
  • [2]This is not to say that the rapid and seamless approach was without problems, notably large losses of output and high unemployment in the short run. Thus, reform will always have to worry about the social safety net and, under some circumstances, may benefit from external assistance, which is where the IMF and others can come in.
  • [3]The IMF addressed this question in depth in the spring 2016 issue of “CESEE Regional Economic Issues.”

Disclaimer: Opinions expressed in policy papers and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Traces of Transition: Unfinished Business 25 Years Down the Road?

FREE Policy Brief Image

This year marks the 25-year anniversary of the breakup of the Soviet Union and the beginning of a transition period, which for some countries remains far from completed. While several Central and Eastern European countries (CEEC) made substantial progress early on and have managed to maintain that momentum until today, the countries in the Commonwealth of Independent States (CIS) remain far from the ideal of a market economy, and also lag behind on most indicators of political, judicial and social progress. This policy brief reports on a discussion on the unfinished business of transition held during a full day conference at the Stockholm School of Economics on May 27, 2016. The event was organized jointly by the Stockholm Institute of Transition Economics (SITE) and the Swedish Ministry for Foreign Affairs, and was the sixth installment of SITE Development Day – a yearly development policy conference.

A region at a crossroads?

25 years have passed since the countries of the former Soviet Union embarked on a historic transition from communism to market economy and democracy. While all transition countries went through a turbulent initial period of high inflation and large output declines, the depth and length of these recessions varied widely across the region and have resulted in income differences that remain until today. Some explanations behind these varied results include initial conditions, external factors and geographic location, but also the speed and extent to which reforms were implemented early on were critical to outcomes. Countries that took on a rapid and bold reform process were rewarded with a faster recovery and income convergence, whereas countries that postponed reforms ended up with a much longer and deeper initial recession and have seen very little income convergence with Western Europe.

The prospect of EU membership is another factor that proved to be a powerful catalyst for reform and upgrading of institutional frameworks. The 10 countries that joined the EU are today, on average, performing better than the non-EU transition countries in basically any indicator of development including GDP per capita, life expectancy, political rights and civil liberties. Even if some of the non-EU countries initially had the political will to reform and started off on an ambitious transition path, the momentum was eventually lost. In Russia, the increasing oil prices of the 2000s brought enormous government revenues that enabled the country to grow without implementing further market reforms, and have effectively led to a situation of no political competition. Ukraine, on the other hand, has changed government 17 times in the past 25 years, and even if the parliament appears to be functioning, very few of the passed laws and suggested reforms have actually been implemented.

Evidently, economic transition takes time and was harder than many initially expected. In some areas of reform, such as liberalization of prices, trade and the exchange rate, progress could be achieved relatively fast. However, in other crucial areas of reform and institution building progress has been slower and more diverse. Private sector development is perhaps the area where the transition countries differ the most. Large-scale privatization remains to be completed in many countries in the CIS. In Belarus, even small-scale privatization has been slow. For the transition countries that were early with large-scale privatization, the current challenges of private sector development are different: As production moves closer to the world technology frontier, competition intensifies and innovation and human capital development become key to survival. These transformational pressures require strong institutions, and a business environment that rewards education and risk taking. It becomes even more important that financial sectors are functioning, that the education system delivers, property rights are protected, regulations are predictable and moderated, and that corruption and crime are under control. While the scale of these challenges differ widely across the region, the need for institutional reforms that reduce inefficiencies and increase returns on private investments and savings, are shared by many.

To increase economic growth and to converge towards Western Europe, the key challenges are to both increase productivity and factor input into production. This involves raising the employment rate, achieving higher labor productivity, and increasing the capital stock per capita. The region’s changing demography, due to lower fertility rates and rebounding life expectancy rates, will increase already high pressures on pension systems, healthcare spending and social assistance. Moreover, the capital stock per capita in a typical transition country is only about a third of that in Western Europe, with particularly wide gaps in terms of investment in infrastructure.

Unlocking human potential: gender in the region

Regardless of how well a country does on average, it also matters how these achievements are distributed among the population. A relatively underexplored aspect of transition is to which extent it has affected men and women differentially. Given the socialist system’s provision of universal access to education and healthcare, and great emphasis on labor market participation for both women and men, these countries rank fairly well in gender inequality indices compared to countries at similar levels of GDP outside the region when the transition process started. Nonetheless, these societies were and have remained predominantly patriarchal. During the last 25 years, most of these countries have only seen a small reduction in the gender wage gap, some even an increase. Several countries have seen increased gender segregation on the labor market, and have implemented “protective” laws that in reality are discriminatory as they for example prohibit women from working in certain occupations, or indirectly lock out mothers from the labor market.

Furthermore, many of the obstacles experienced by small and medium-sized enterprises (SMEs) are more severe for women than for men. Female entrepreneurs in the Eastern Partnership (EaP) countries have less access to external financing, business training and affordable and qualified business support than their male counterparts. While the free trade agreements, DCFTAs, between the EU and Ukraine, Georgia, and Moldova, respectively, have the potential to bring long-term benefits especially for women, these will only be realized if the DCFTAs are fully implemented and gender inequalities are simultaneously addressed. Women constitute a large percentage of the employees in the areas that are the most likely to benefit from the DCFTAs, but stand the risk of being held back by societal attitudes and gender stereotypes. In order to better evaluate and study how these issues develop, gendered-segregated data need to be made available to academics, professionals and the general public.

Conclusion

Looking back 25 years, given the stakes involved, things could have gotten much worse. Even so, for the CIS countries progress has been uneven and disappointing and many of the countries are still struggling with the same challenges they faced in the 1990’s: weak institutions, slow productivity growth, corruption and state capture. Meanwhile, the current migration situation in Europe has revealed that even the institutional development towards democracy, free press and judicial independence in several of the CEEC countries cannot be taken for granted. The transition process is thus far from complete, and the lessons from the economics of transition literature are still highly relevant.

Participants at the conference

  • Irina Alkhovka, Gender Perspectives.
  • Bas Bakker, IMF.
  • Torbjörn Becker, SITE.
  • Erik Berglöf, Institute of Global Affairs, LSE.
  • Kateryna Bornukova, Belarusian Research and Outreach Center.
  • Anne Boschini, Stockholm University.
  • Irina Denisova, New Economic School.
  • Stefan Gullgren, Ministry for Foreign Affairs.
  • Elsa Håstad, Sida.
  • Eric Livny, International School of Economics.
  • Michal Myck, Centre for Economic Analysis.
  • Tymofiy Mylovanov, Kyiv School of Economics.
  • Olena Nizalova, University of Kent.
  • Heinz Sjögren, Swedish Chamber of Commerce for Russia and CIS.
  • Andrea Spear, Independent consultant.
  • Oscar Stenström, Ministry for Foreign Affairs.
  • Natalya Volchkova, Centre for Economic and Financial Research.

 

Important Policy Lessons from Swedish-Russian Capital Flows Data

A recent study of capital flows between Sweden and Russia provides many policy lessons that are highly relevant for the current economic situation in Russia. In line with studies on other countries, bilateral FDI flows were more stable than portfolio flows, which is important for a country looking for predictable external sources of funding. However, much of the FDI flows came with trade and growth of the Russian market. The sharp decline in imports and fall in GDP is therefore bad news also when it comes to attracting FDI. The conclusion is (again) that institutional reforms and reengaging with the West are crucial policies to stimulate both the domestic economy and encourage much-needed FDI.

In a recent paper (Becker 2016), I take a detailed look at the trends and nature of bilateral capital flows between Sweden and Russia over that last 15 years. Although the paper focuses on the capital flows of a relatively small country like Sweden with Russia, it sheds some light on more general theoretical and empirical issues associated with FDI and portfolio flows that are highly relevant for Russia today.

Measuring Bilateral FDI

One general qualifier for studies of bilateral capital flows is however the reliability of data; Not only is a significant share of international capital flows routed through offshore tax havens which makes identifying the true country of origin and investment difficult, but also many investing companies are multinationals (MNEs) with operations and shareholders in many countries so it is hard to have a clear definition of what is a “Swedish” or a “Russian” company. In addition, when different official data providers, in this case Statistics Sweden (SCB) and the Central Bank of Russia (CBR), report capital flows on the macro level, there are large discrepancies.

Private companies also gather company level data on FDI that can be aggregated and compared with the macro level FDI data. This data is on gross FDI flows and should not be expected to be the same as the net macro level FDI flows data but is a bit of a “reality check” of the macro data.

Figure 1. Average annual FDI flows

Fig1Sources: SCB, CBR, fDi Market, MergerMarkets

The reported annual average flow of FDI from Sweden to Russia varies from around USD500 million to USD1.2 billion depending on the data source. Russian flows to Sweden are rather insignificant regardless of the source but the different sources do not agree on the sign of the net flows (Figure 1).

The differences between data sources suggest that some caution is warranted when analyzing bilateral FDI flows. With this caveat in mind, there are still some clear patterns in the capital flows data from Sweden to Russia that emerge and carries important policy lessons in the current Russian economic environment.

FDI vs. Portfolio Investments

There is a large literature discussing the distinguishing features of FDI and portfolio flows (see Becker 2016 for a summary). Some of the key macro economic questions include which type of flows provides most international risk sharing; are most stable over time; or most likely to contribute to balance of payments crises when the flows go in reverse. In addition, there are potential differences in terms of the amount of international knowledge transfers and how different types of capital flows respond to institutional factors.

Figure 2. FDI and portfolio investments

Fig2Source: SCB

Figure 2 shows that FDI has been much more stable than portfolio flows in the years prior to and after the global financial crisis as well as in more recent years. Although all types of capital flows respond negatively to poor macroeconomic performance, and the stock of portfolio investments swing around much faster than FDI investments, i.e., portfolio flows go in reverse more easily and can contribute to external crises. This makes FDI a more preferable type of capital flow for Russia.

FDI and Trade Go Together

Since FDI is a desired type of capital flow, it is important to understand its driving forces. The first question to address is whether FDI and trade are substitutes or complements. Since the bulk of FDI comes from MNEs that operate in many countries, we can imagine cases both when FDI supports existing trade and cases when it is aimed at replacing trade by moving production to the country where the demand for the goods is high.

In the case of Sweden and Russia, the macro picture is clear; FDI has increased very much in line with Swedish exports to Russia (Figure 3). Both of these variables are of course closely correlated with the general economic development in Russia, but even so, the very close correlation between FDI and trade over the last 15 years suggests that they are compliments rather than substitutes.

Figure 3. Swedish Exports and FDI to Russia

Fig3Source: SCB

Most FDI is Horizontal

FDI flows are often categorized in terms of the main motivating force for MNEs to engage in cross-border investment: vertical (basically looking for cheaper inputs), horizontal (expanding the customer base), export-platform (producing abroad for export to third countries) or complex (a mix of the other reasons) FDI.

Looking at the sectoral composition of FDI from Sweden to Russia (Figure 4), most investments have come in sectors where it is clear that MNEs are looking to expand their customer base. Even in the case of real estate investments, a large share is IKEA developing new shopping centers that host their own outlets together with other shops. Communication and financial services are also mostly related to service providers looking for new customer. Only a small share is in natural resource sectors that would be more in line with vertical FDI, while there are very few (if any) examples of MNEs moving production to Russia to export to third countries.

Figure 4. Sectors of Swedish FDI to Russia

Fig4Source: SCB

Policy conclusions

The above figures on bilateral capital flows from Sweden to Russia carry three important policy messages: 1) FDI is more stable than portfolio flows; 2) Trade goes hand in hand with FDI; and 3) FDI to Russia has mostly been horizontal and driven by an expanding customer base.

In the current situation where Russia should focus on policies to attract private capital inflows, the goal should be to attract FDI. Instead, the government is now looking for portfolio inflows in the form of a USD3 billion bond issue. But FDI is a more stable type of international capital than portfolio flows and also come with the potential of important knowledge transfers both in terms of new technologies and management practices.

However, as we have seen above, FDI inflows have in the past been correlated with increased trade and an expanding Russian market. In the current environment, where imports with the West declined by 30-40 percent in the last year, GDP fell by around 4 percent, and the drop in consumers’ real incomes have reached double digits in recent months, it is hard to see any macro factors that will drive FDI inflows.

Instead, attracting FDI in this macro environment requires policy changes that remove political and institutional barriers to investments. The first step is to fulfill the Minsk agreement and contribute to a peaceful solution in Ukraine that is consistent with international laws. This would not only remove official sanctions but also provide a very serious signal to foreign investors that Russia plays by the international rulebook and is a safe place for investments from any country.

The second part of an FDI-friendly reform package should address the institutional weaknesses that in the past have reduced both foreign and domestic investments. It is telling that many papers that look at the determinants of FDI flows to transition countries include a ‘Russia dummy’ that is estimated to be negative and both statistically and economically significant (see e.g. Bevan, Estrin and Meyer, 2004 and Frenkel, Funke, and Stadtmann, 2004). One factor that reduces the significance of the ‘Russia dummy’ is related to how laws are implemented. Other studies point to the negative effect corruption has on FDI.

Reducing corruption and improving the rule of law are some of the key reforms that would have benefits far beyond attracting FDI and has been part of the Russian reform discussion for a very long time. It was also part of the reform program that then-President Medvedev presented to deal with the situation in 2009 together with a long list of other structural reforms that would help modernize the Russian economy and society more generally.

As the saying goes, don’t waste a good crisis! It is time that Russia implements these long-overdue reforms and creates the prospering economy that the people of Russia would benefit from for many generations.

References

  • Becker, T, 2016, “The Nature of Swedish-Russian Capital Flows”, SITE Working paper 35, March.
  • Bevan, A, Estrin, S & Meyer, K 2004, “Foreign investment location and institutional development in transition economies”, International Business Review, vol. 13, no. 1, pp.43-64.
  • Frenkel, M, Funke, K & Stadtmann, G 2004, “A panel analysis of bilateral FDI flows to emerging economies”, Economic Systems, vol. 28, no. 3, pp. 281-300.