Tag: Counter-sanctions
The Effects of Sanctions
Sanctions imposed on Russia after its invasion of Ukraine are argued to be the strongest and farthest-reaching imposed on a major power after WWII, more numerous and more comprehensive than all other measures currently in force against all other sanctioned countries. A question often asked, which is hard to answer, is whether sanctions are effective. In the present case, the effect most associate with success would be a swift end of the hostilities, perhaps accompanied by a regime change in Russia. But even when it seems these prizes are out of reach, sanctions certainly have effects, all too often glossed over by the debate but nonetheless of significance.
Why Are Sanctions Seen as Ineffective?
Sanctions are restrictions imposed on a country by one or more other countries with the intent to pressure in effect some desirable outcome, or conversely to condemn and punish some undesired action already taken. When evaluating sanctions, therefore, the focus is naturally on whether they succeed to discourage this particular course of action, or to remove the decision-makers responsible for it. And on this account, sanctions are overwhelmingly seen as unsuccessful. However, a few complications cloud this conclusion.
First of all, sanctions that are implemented already failed at the threat stage. If the threat of a well-specified and credible retribution did not deter the receiving part from pursuing the sanctioned course of action, it is because they reckoned that they can afford to ignore it. So, unless this punishment goes beyond what was expected, in scope or in time, its implementation will also fall flat. This implies that any effort to evaluate sanctions retrospectively suffers from the negative selection problem, when almost exclusively cases of failure, intended in this particular sense, are observed.
Second, sanctions are a rather blunt instrument, that often cannot be targeted with the precision one would desire. Even though sanctions have over time become “smarter”, in the sense that stronger efforts are made to target the regime, or elites that may have the clout to actually affect the regime (think the oligarchs in Russia), they often fail to reach or affect in a meaningful way those individuals that are the real objective, for various reasons. Instead, they can cause significant “collateral damage”, to groups of a population that often are quite far removed from any real decisional power, including those in the sending countries, and even third parties who are extraneous to the situation. The damage inflicted to those parties can only in very special circumstances be part of a causal link eventually impacting the intended outcome. For instance, citizens struggling in an impoverished economy could be led to a riot, or in some other way put pressure on their government – but this implies that the country is sufficiently free for riots to take place or for voters’ opinions to be taken into consideration.
To this, it should be added that, once a course of action has been taken, it might be not obvious how to change or undo it, notwithstanding the signaled displeasure from the sanctioning parties. Sanctions are therefore rarely working in isolation. When positive outcomes are achieved, it is often the case that diplomatic channels were kept open and clear incentives offered for a way out. But then it might be unclear whether it was the sanctions or something else that led to the success.
Other Effects of Sanctions
The pitfalls highlighted above, which make it tricky to answer whether sanctions are effective at reaching their aim, also apply when studying other effects that sanctions might have. There is of course a range of outcomes that might be affected: in this literature we find studies looking at inequality (Afesorgbor et al., 2016), exchange rates (Dreger et al., 2016), trade (Afesorgbor, 2019; Crozet et al. 2020), the informal sector (Early et al, 2019), military spending (Farzanegan, 2019), women’s rights (Drury, 2014), and many more. But as it often happens the most studied outcome is GDP, as this is a measure that efficiently summarizes the whole economy and correlates very nicely with many other outcomes we care about.
Suppose then that we would like to investigate what is the effect of sanctions on a target country’s GDP. One problem is identifying an appropriate counterfactual; to observe what would have happened in the target country in the absence of sanctions. It is also an issue that the incidence of international sanctions is often a product of a series of events in the target or sender country (e.g. the Iraqi invasion of Kuwait or the apartheid system in South Africa), which also have impacts on the economy that would need to be isolated from the impact of sanctions themselves.
A variety of econometric techniques can be of help in this situation. One first idea is to use, as a reference, cases where sanctions were almost implemented. Gutmann et al. (2021) compare countries under sanctions to countries under threat of sanctions, while Neuenkirch and Neumeier (2015) contrast implemented sanctions to vetoed sanctions, in the context of UN decisions. Both studies find a relatively sizeable negative impact on GDP, in a large group of countries over a long period of time. In the first study, the target country’s GDP per capita decreases on average by 4 percent over the two first years after sanctions imposition and shows no signs of recovery in the three years after sanctions are removed. The second study estimates a reduction in GDP growth that starts at between 2,3 and 3,5 percent after the imposition of UN sanctions and, although it decreases over time, only becomes insignificant after ten years. It should be considered that a lower growth rate compounds over time: experiencing a slower growth even by only 1 percent over ten years implies a total loss of almost 15 percent. As a comparison, the average GDP loss due to the Covid-19 pandemic is estimated to be 3,4 percent in 2020.
These studies have limitations. Countries under threat of sanctions are probably making efforts to avoid punishment, which might imply that these countries are precisely the ones who would be most negatively affected by the sanctions. If so, the impact found by Gutmann et al. (2021) is probably underestimated. Neuenkirch and Neumeier (2015) only look at UN sanctions, which on one hand might give a larger impact because of the multilateral coordination. But on the other hand, the issue of an appropriate counterfactual emerges again: countries whose sanctions are vetoed might be larger, more influential, and better connected within the international community or to some of the major powers, which may also affect their economic success in other ways.
Kwon et al. (2020) adopt a different technique and come to a different conclusion. They use an instrumental variable (IV) approach and find that standard OLS overestimates the negative effect of sanctions, in other words, that sanctions’ effects are less negative than we think. They find an instantaneous effect on per capita GDP that becomes insignificant in the long run, just as if sanctions never happened.
Our confidence in these estimates hinges upon the validity of the IV used. In this case, the actual imposition of sanctions is replaced by its estimated likelihood based on sender countries’ variation in institutions and diplomatic policies (which are exogenous to the target country’s economic developments) and pre-determined country-pair characteristics (trade and financial flows, travels, colonial ties). Therefore, episodes where sanctions are imposed because the sender country happens to be in a period of hawkish foreign policy and because the target does not have strong historical relations with them are contrasted to episodes in which the opposite is true, and sanctions are therefore not implemented, everything else being equal.
The results also show that there is heterogeneity across types of sanctions, with trade sanctions having both a short and long run negative impact, while smart sanctions (i.e. sanctions targeted on particular individuals or groups) have positive effects on the target country’s economy in the long run. This is quite an important point in itself. Often, sweeping statements about effectiveness of “sanctions” lump all the different measures together, and fail to appreciate that there may be substantial differences. However, the effect of one or another type of sanctions will vary depending on the structure of the economy that is hit.
A third approach is the synthetic control method. Here the researcher tries to replicate as closely as possible the path of economic development in the target country up to the point of sanctions’ implementation, using one or a weighted average of several other countries. In this way, evolution after sanctions’ inception can be compared between the actual country and its synthetic control. Gharehgozli (2017) builds a replica of Iran based on a weighted combination of eight OPEC member countries, two non-OPEC oil-producing countries and three neighboring countries, that match a set of standard economic indicators for Iran over the period 1980-1994. The study finds that over the course of three years the imposition of US sanctions led to a 17.3 percent decline in Iran’s GDP, with the strongest reduction occurring in 2012, one year after the intensification of sanctions (2011-2014) was initiated.
This is a stronger effect than those presented earlier. However, it only speaks to the special case of Iran, rather than estimating a broader global average effect. Another study focusing on Iran (Torbat, 2005) makes the important point that the effect of sanctions varies by type: financial sanctions are found to be more effective (in lowering Iran’s GDP) than trade sanctions – which contrasts with what is found to be true on average by Kwon et al. (2020).
Finally, the relation between economic damage and the effectiveness of sanctions in terms of reaching their goals is debatable. In a theoretical model, Kaempfer et al. (1988) suggest that this relation might even be negative and that the most effective sanctions are not necessarily the most damaging in economic terms. The sanctions most likely to facilitate political change in the target country are those designed to cause income losses on groups benefiting from the target country’s policies, according to the authors.
The Effect of Sanctions on Russia
Are these results from previous studies useful to form expectations about the effects of the current sanctions on Russia? The invasion of Ukraine which started at the end of February was a relatively unexpected event, at least in character and scale, in contrast to what can be said in the majority of situations involving sanctions. However, the context leading up to it was not one of normality either. Besides the global pandemic, Russia was already under sanctions following the Crimean Crisis in 2014. The impact of those economic sanctions, and of the counter-sanctions imposed by Russia as retaliation, is still unclear – and will be in all probability completely dwarfed by the current sanction wave as well as other exogenous shocks, such as significant changes in oil prices in this period. Kholodilin et al. (2016) estimated the immediate loss of GDP in Russia to be 1,97 percent quarter-on-quarter, while no impact on the aggregate Euro Area countries’ GDP could be observed. A Russian study (Gurvich and Prilepsky, 2016) forecasted for the medium term a loss of 2,4 percentage points by 2017 as compared to the hypothetical scenario without sanctions. This pales in comparison to the magnitude of consequences that are being contemplated now. Even the potentially optimistic, or at least conservative, assessment of the current situation by the Russian Federation’s own Accounts Chamber, in the words of its head Alexei Kudrin, suggests that: “For almost one and a half to two years we will live in a very difficult situation.” At the end of April, they published revised forecasts on the economic situation, among which the one for GDP is shown below. Russian Central Bank chief Elvira Nabiullina also sounded bleak, speaking in the State Duma: “The period when the economy can live on reserves is finite. And already in the second – the beginning of the third quarter, we will enter a period of structural transformation and the search for new business models.” The World Bank has forecasted that Russia’s 2022 GDP output will fall by 11.2% due to Western sanctions. These numbers do not yet factor in the announcement of the sixth EU sanction package, which famously includes an oil embargo (see an earlier FREE Policy Brief on the dependency of Russia on oil export).
Figure 1. Revised forecasts of growth rates for the Russian economy
Are these estimates realistic, and what would have been the counterfactual development without sanctions? If we believe the studies reviewed in the previous section, and also taking into account the unprecedented scale and reach of the current sanctions, at least the time horizon, if not the size, of the consequences forecast by Russian authorities is, though substantial, certainly underestimated. But there is too much uncertainty at the moment, hostilities are still ongoing and sanctions are not being lifted for quite some time in any foreseeable scenario. One reason why these sanctions are not likely to be relaxed, and why their impact is expected to be more severe than in most cases, is that a very broad coalition of countries is backing them. Not only this but the sanctioning countries see Russia’s conduct as a potential threat to the existing world order, so their motivation to contrast it is particularly strong relative to, say, the cases of Iran, North Korea, or Burma.
Moreover, these loss estimates do not yet factor in the announcement of the sixth EU sanction package, which famously includes an oil embargo. Oil is a fundamental driver of growth in Russia. An earlier FREE Policy Brief shows how two-thirds of Russia’s growth can be explained by changes in international oil prices. This is not because oil constitutes such a large share of GDP but because of the secondary effect oil money generates in terms of domestic consumption and investment. Reducing export revenues from the sale of oil and gas will therefore have significant effects on Russia’s GDP, well beyond what the first-round effect of restricting the oil sector would imply.
In short, it is too early to venture an assessment in detail, however, the scale of loss that can be expected is clear from these and many other indicators. In the longer run, it will only be augmented by the relative isolation in which Russia has ended up, implying lower investments and subpar capital inputs at inflated prices, and by the ongoing brain drain (3,8 million people have already left the country since the war began).
Conclusion
In conclusion, the debate about economic sanctions as a tool of foreign policy is often restricted to a binary question: do they work or not? There is ample support in the literature studying sanctions to say that this question is too simplistic. Even if we do not see immediate success in reaching the main aim of the sanction policy, they do cause damage, in many dimensions, and such damage is non-negligible. The political will and the regime behind it may be unaffected, but the resources they need to continue with their course of action will unavoidably shrink in the longer run.
References
- Afesorgbor, S. K. (2019). The impact of economic sanctions on international trade: How do threatened sanctions compare with imposed sanctions?. European Journal of Political Economy, 56, 11-26.
- Afesorgbor, S. K., & Mahadevan, R. (2016). The impact of economic sanctions on income inequality of target states. World Development, 83, 1-11.
- Crozet, M., & Hinz, J. (2020). Friendly fire: The trade impact of the Russia sanctions and counter-sanctions. Economic Policy, 35(101), 97-146.
- Dreger, C., Kholodilin, K. A., Ulbricht, D., & Fidrmuc, J. (2016). Between the hammer and the anvil: The impact of economic sanctions and oil prices on Russia’s ruble. Journal of Comparative Economics, 44(2), 295-308.
- Drury, A. Cooper and Dursun Peksen. “Women and economic statecraft: The negative impact international economic sanctions visit on women.” European Journal of International Relations 20 (2014): 463 – 490.
- Early, B., & Peksen, D. (2019). Searching in the shadows: The impact of economic sanctions on informal economies. Political Research Quarterly, 72(4), 821-834.
- Farzanegan, Mohammad Reza. (2019). “The Effects of International Sanctions on Military Spending of Iran: A Synthetic Control Analysis.” Organizations & Markets: Policies & Processes eJournal .
- Gharehgozli, O. (2017). An estimation of the economic cost of recent sanctions on Iran using the synthetic control method. Economics Letters, 157, 141-144.
- Gurvich E., Prilepskiy I. (2016). The impact of financial sanctions on the Russian economy. Voprosy Ekonomiki. ;(1):5-35. (In Russ.) https://doi.org/10.32609/0042-8736-2016-1-5-35
- Gutmann, J., Neuenkirch, M., and Neumeier, F., 2021. ”The Economic Effects of International Sanctions: An Event Study” CESifo Working Paper No. 9007
- Kaempfer, W. H., & Lowenberg, A. D. (1988). The theory of international economic sanctions: A public choice approach. The American Economic Review, 78(4), 786-793.
- Kholodilin, Konstantin A. and Netsunajev, Aleksei. (2016) Crimea and Punishment: The Impact of Sanctions on Russian and European Economies. DIW Berlin Discussion Paper No. 1569, SSRN: https://ssrn.com/abstract=2768622
- Kwon, O., Syropoulos, C., & Yotov, Y. V. (2020). Pain and Gain: The Short-and Long-run Effects of Economic Sanctions on Growth. Manuscript.
- Neuenkirch, M., & Neumeier, F. (2015). The impact of UN and US economic sanctions on GDP growth. European Journal of Political Economy, 40, 110-125.
- Torbat, A. E. (2005). Impacts of the US trade and financial sanctions on Iran. World Economy, 28(3), 407-434.
- World Bank. (2022). “War in the Region” Europe and Central Asia Economic Update (Spring), Washington, DC: World Bank.
Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.
The Russian Food Embargo: Five Years Later
In this brief, we report the results of a quantitative assessment of the consequences of counter-sanctions introduced by the Russian government in 2014 – Russian food embargo. We consider several affected commodity groups: meat, fish, dairy products, fruit and vegetables. Applying a partial equilibrium analysis to the data from several sources, including Rosstat, Euromonitor, UN Comtrade, industry reviews etc. as of 2018, we obtain that consumers’ total loss amounts to 445 bn Rub, or 3000 Rub per year for each Russian citizen. This is equivalent to a 4.8% increase in food expenditure for those who are close to the poverty line. Out of this amount, 84% is distributed towards producer gains, 3% to importers, while the deadweight loss amounts to 13%. Based on industry dynamics, we identify industries where import substitution policies led to positive developments, industries where these policies failed and group of industries where partial success of import substitution was very costly for consumers.
The full text of the underlying paper is forthcoming in the Journal of the New Economic Association in October 2019.
In August 2014, in response to sectoral sanctions against Russia, the national government issued resolution No. 778, which prohibited import of processed and raw agricultural products from the United States, the EU, Ukraine and a number of other countries (Norway, Canada, Australia, etc.). The goal was to limit market access for countries, which supported sectoral sanctions. The other rhetoric of the counter-sanctions was to support domestic producers via trade restrictions, or by other words – import substitution.
This brief provides an update of welfare analysis of counter-sanctions based on partial equilibrium model of domestic market. The initial estimations based on 2016 data can be found in another FREE Policy Brief here. This time we compare the consumption, outputs and prices of the counter sanctioned goods as of 2018 relative to 2013. The estimated consumer surplus changes, producer gains and prices are reported in Table 1.
Table 1. Welfare effects of counter-sanctions in 2018 relative to 2013.
Data sources: Rosstat, Euromonitor, UN COMTRADE
* Negative losses correspond to gains
** Negative gains correspond to losses
Green color was used to mark the commodity groups with a noticeable consumption growth in 2013-2018 and red color those with consumption decrease.
Effect on production
From the point of view of price dynamics, on the one hand, and consumption and output, on the other, the studied products can be divided into three groups.
The first group which we call “Success of import substitution” includes goods for which real prices (in 2013 level) increased by 2016 but afterwards, the growing domestic production ensured that by 2018 prices fell below the level of 2013 with a corresponding increase in consumption. This group includes tomatoes, pork, poultry and, with some reservation, beef. For beef, growing domestic production pushed prices down after 2016, but the level of consumption and prices have not yet reached the pre-sanction level.
For the second group, import substitution has not resulted in a price decrease, we call this group “Failure of import substitution”. For products in this group, the initial increase in prices by 2016 was not reverted afterwards. Their consumption decreased significantly compared to 2013, and domestic production either continued to fall after 2016, or its growth turned out to be fragile. This group includes apples, cheese, fish, as well as condensed milk and processed meat.
We call the third group “Very expensive import substitution”. It includes fromage, sour milk, milk and (to a lesser extent) butter. This group is characterized by increase in consumption and output in the period 2016–2018, but real prices over this period still remain very high.
Effect on consumers
By comparing the losses and gains of consumers in different categories of goods due to changes in real prices and real consumption, our analysis provides the following monetary equivalents. For all considered counter-sanctioned product groups, with the exception of poultry, pork and tomatoes, consumer losses are around 520 billion rubles per year (in 2013 prices). In three product groups (poultry, pork, tomatoes), in which there was a decrease in prices and a significant increase in consumption, the consumer gains are equivalent to 75 billion rubles per year. Thus, the total negative effect from counter-sanctions for the consumers amounted to 445 billion rubles a year, or about 3000 rubles for a person per year.
Given the cost of the minimum food basket, defined in Russia as 50% of the subsistence level, the impact of counter-sanctions on the budgets of Russian consumers can be estimated as follows. 3000 rubles account for approximately 4.8% of the annual cost of the minimum food basket. The minimum food basket is a set of food products necessary to maintain human health and ensure its vital functions that is established by law. In other words, one can say that 3000 rubles a year are equivalent to a 4.8% increase in food expenditure for those who are close to the poverty line.
Consumer surplus losses were significantly redistributed in favor of domestic production, totaling 374 billion, or 2500 rubles per year per person. Another 56 billion rubles (or 390 rubles per person) correspond to the deadweight loss, i.e., reflect the inefficiency increase of the Russian economy, and 16 billion rubles (110 rubles per person) is the equivalent of redistribution in favor of foreign producers, who get access to Russian market with higher priced products than before counter-sanctions.
Effect on foreign partners
As a result of the selective embargo, the geography of Russian imports of the affected goods has changed. Traditional suppliers of these goods, primarily from Europe, were replaced by suppliers from other countries due to trade diversion. Given the changes in the composition of importers after the imposition of sanctions, we single out countries that have lost and countries that have gained access to the Russian market. We use the change in trade volumes from the respective countries as indicators of growth and decrease in share of these importers in the Russian market. Below we consider in detail the three groups of goods with the largest gains for importers in 2018 compared with 2013: cheese, apples, butter.
Cheese imports decreased significantly after the imposition of counter-sanctions, in 2018 accounting for only 42% of their dollar value in 2013. The total gain of importers due to the growth of domestic prices in 2013-2018 amounted to 17.3 billion rubles (Table 1) and was distributed among following importing countries: Belarus (78%), Argentina (6%), Switzerland (4%), Uruguay (3%), Chile (3%), other countries (6%). Countries that lost their shares of the Russian cheese market included Ukraine, Holland, Germany, Finland, Poland, Lithuania, France, Denmark, Italy and Estonia. As mentioned earlier, domestic production and Belarusian imports were not able to fully compensate for imports from countries on the counter-sanctions list, and in 2016-2018 cheese consumption in Russia decreased significantly.
Apple imports after the initial drop in 2016 partially recovered in 2018, amounting to 66% of their dollar volume in 2013. The total gain of importers in 2018 compared to 2013 amounted to 15.0 billion rubles (Table 1); it was distributed between Serbia (22%), Moldova (19%), China (13%), Turkey (10%), Iran (10%), Azerbaijan (7%), South Africa (4%), Chile (3%), Brazil (3%) and other countries (9%). Poland suffered the most from the ban on apple imports; it accounted for about 80% of all losses. Other losers from counter-sanctions include Italy, Belgium and France. The reorientation of trade flows did not completely replace Polish imports, so apple consumption in 2016-2018 was significantly lower than in 2013.
Imports of butter in 2018 was also below the level of 2013 (67% of dollar value). The gain of importers in 2018 compared to 2013 amounted to 11.2 billion rubles and was distributed among the following trading partners: Belarus (90%), Kazakhstan (4%), Kyrgyzstan (3%) and other countries (3%). Among the countries bearing most of the negative burden of the diversion of trade, one should mention Finland and Australia.
Conclusions
Five year after counter-sanctions were put in place Russian consumers continue paying for them out of their pockets. While few industries have demonstrated a positive effect of import substitution policies, most are not effective enough to revert the price dynamics.
References
- Kuznetsova, Polina; and Natalya Volchkova, 2019. “How Much Do Counter-Sanctions Cost: Welfare Analysis”, Journal of New Economic Association, N3(43), pp 173-183. (in Russian)
Russia’s Real Cost of Crimean Uncertainty
The annexation of Crimea has real costs to the Russian economy beyond what is measured by some items in the armed forces’ budget; social spending in the occupied territories; or the cost of building a rather extreme bridge to solve logistics issues. Russia’s real cost of the annexation of Crimea is also associated with the permanent loss of income that the entire Russian population is experiencing due to increased uncertainty, reduced capital flows and investment, and thus a growth rate that is significantly lower than it would have been otherwise. Since the years of lost growth are extremely hard to make up for in later years, there will be a permanent loss of income in Russia that is a significant part of the real cost of annexing Crimea and continuing the fighting in Eastern Ukraine. It is time to stop not only the human bleeding associated with Ukraine, but also the economic.
Estimating the real cost of Russia’s annexation of Crimea and the continued involvement in Eastern Ukraine is complicated since there are many other things going on in the Russian economy at the same time. In particular, oil prices fell from over $100/barrel in late 2013 to $30/barrel in 2016 (Figure 1). Becker (2016) has shown that 60-80 percent of the variation in GDP growth can be explained by changes in oil prices, so this makes it hard to just look at actual data on growth to assess the impact of Crimea and subsequent sanctions and counter sanctions.
Figure 1. Russian GDP and oil price
Source: Becker (2019)
The approach here is instead to focus on one channel that is likely to be important for growth in these circumstances, which is uncertainty and its impact on capital flows and investment.
From uncertainty to growth
The analysis presented here is based on several steps that link uncertainty to GDP growth. All the details of the steps in this analysis are explained at some length in Becker (2019). Although this brief will focus on the main assumptions and estimates that are needed to arrive at the real cost of Crimea, a short description of the steps is as follows.
First of all, in line with basic models of capital flows, investors that can move their money across different markets (here countries) will look at relative returns and volatility between different markets. When relative uncertainty goes up in one market, capital will leave that market.
The next step is that international capital flows affect investment in the domestic market. If capital leaves a country, less money will be available for fixed capital investments.
The final step is that domestic investments is important for growth. Mechanically, in a static, national accounts setting, if investments go down, so does GDP. More long term and dynamically, investments have a supply side effect on growth, and if investments are low, this will affect potential as well as actual growth negatively.
These steps are rather straightforward and saying that uncertainty created by the annexation of Crimea leads to lower growth is trivial. What is not trivial is to provide an actual number on how much growth may have been affected. This requires estimates of a number of coefficients that is the empirical counterparts to the theoretical steps outlined here.
Estimates to link uncertainty to growth
In short, we need three coefficients that link: domestic investments to growth; capital flows to domestic investments; and uncertainty to capital flows.
There are many studies that look at the determinants of growth, so there are plenty of estimates on the first of these coefficients. Here we will use the estimate of Levine and Renelt (1992), that focus on finding robust determinants of growth from a large set of potential explanatory variables. In their preferred specification, growth is explained well by four variables, initial income, population growth, secondary education and the investments to GDP ratio. The coefficient on the latter is 17.5, which means that when the investment to GDP ratio increases by 10 percentage points, GDP grows an extra 1.75 percentage points per year. Becker and Olofsgård (2018) have shown that this model explains the growth experience of 25 transition countries including Russia since 2000 very well, which makes this estimate relevant for the current calculation.
The next coefficient links capital flows to domestic investments. This is also a subject that has been studied in many empirical papers. Recent estimates for transition countries and Russia in Mileva (2008) and Becker (2019) find an effect of FDI on domestic investments that is larger than one, i.e., there are positive spillovers from FDI inflows to domestic investments. Here we will use the estimate from Becker (2019) that finds that 10 extra dollars of FDI inflows are associated with an increase of domestic investments of 15 dollars.
Finally, we need an estimate linking uncertainty with capital flows. There are many studies looking at risk, return and investment in general, and also several studies focusing on international capital flows and uncertainty. Julio and Yook (2016) look at how political uncertainty around elections affect FDI of US firms and find that FDI to countries with high institutional quality is less affected by electoral uncertainty than others. Becker (2019) estimates how volatility in the Russian stock market index RTS relative to the volatility in the US market’s S&P 500 is associated with net private capital outflows. The estimate suggests that when volatility in the RTS goes up by one standard deviation, this is associated with net private capital outflows of $30 billion.
These estimates now only need one more thing to allow us to estimate how much Crimean uncertainty has impacted growth and this is a measure of the volatility that was created by the annexation of Crimea.
Measuring Crimean uncertainty
In Becker (2019), the measure of volatility that is used in the regression with net capital outflows is the 60-day volatility of the RTS index. Since we now want to isolate the uncertainty created by Crimea related events, we need to take out the volatility that can be explained by other factors in order to arrive at a volatility measure that captures Crimean induced uncertainty. In Becker (2019) this is done by running a regression of RTS volatility on the volatility of international oil prices and the US stock market as represented by the S&P 500. The residual that remains after this regression is the excess volatility of the RTS that cannot be explained by these two external factors. The excess volatility of the RTS index is shown in figure 2.
It is clear that the major peaks in excess volatility are linked to Crimea related events, and in particular to the sanctions introduced at various points in time. From March 2014 to March 2015, there is an average excess volatility of 0.73 standard deviations with a peak of almost 4 when the EU and the USA ban trade with Crimea. This excess volatility is our measure of the uncertainty created by the annexation of Crimea.
Figure 2. RTS excess volatility
Source: Becker (2019)
From Crimean uncertainty to growth
The final step is simply to use our measure of Crimean induced uncertainty together with the estimates that link uncertainty in general to growth.
The estimated excess volatility associated with Crimea is conservatively estimated at 0.7 standard deviations. Using this with the estimate that increasing volatility by one standard deviation is associated with $30 billion in capital outflows, we get that the Crimean uncertainty would lead to $21 billions of capital outflows in one quarter or $84 billions in one year. If this is in the form of reduced FDI flows, we have estimated that this means that domestic investments would fall by a factor of 1.5 or $126 billions.
In this period, Russia had a GDP of $1849bn and fixed capital investments of $392bn. This means that $126 billions in reduced investments correspond to a reduction in the investments to GDP ratio of 7 percentage points (or that the investments to GDP ratio goes from around 21 percent to 14 percent).
Finally, using the estimate of 17.5 from Levine and Renelt, this implies that GDP growth would have been 1.2 percentage points higher without the estimated decline in investments to GDP.
In other words, the Crimean induced uncertainty is estimated to have led to a significant loss of growth that has to be added to all the other costs of the annexation of Crimea and continued fighting in Eastern Ukraine. Note that recent growth in Russia has been just barely above 1 percent per year, so this means that growth has been cut in half by this self-generated uncertainty.
Of course, the 1.2 percentage point estimate of lost growth is based on many model assumptions, but it provides a more sensible estimate of the cost of Crimea than we can get by looking at actual data that is a mix of many other factors that have impacted capital flows, investments and growth over this period.
Policy conclusions
The annexation of Crimea and continued fighting in Eastern Ukraine carry great costs in terms of human suffering. In addition, they also carry real costs to the Russian economy. Not least to people in Russia that see that their incomes are not growing in line with other countries in the world while the value of their rubles has been cut in half. Some of this is due to falling oil prices and other global factors that require reforms that will reorient the economy from natural resource extraction to a more diversified base of income generation. This process will take time even in the best of worlds.
However, one “reform” that can be implemented over night is to stop the fighting in Eastern Ukraine and work with Ukraine and other parties to get out of the current situation of sanctions and counter-sanctions. This would provide a much-needed boost to foreign and domestic investments required to generate high, sustainable growth to the benefit of many Russians as well as neighboring countries looking for a strong economy to do trade and business with.
References
- Becker, T, (2019), “Russia’s macroeconomy—a closer look at growth, investment, and uncertainty”, forthcoming SITE Working paper.
- Becker, T. and A. Olofsgård, (2018), “From abnormal to normal—Two tales of growth from 25 years of transition”, Economics of Transition, vol. 26, issue 4.
- Becker, T. (2016), “Russia and Oil – Out of Control”, FREE policy brief, October.
- Julio, B. and Yook, Y. (2016), ‘Policy uncertainty, irreversibility, and cross-border flows of capital’, Journal of International Economics, Vol. 103, pp. 13-26.
- Levine, R. and Renelt, D. (1992). ‘A Sensitivity Analysis of Cross-Country Growth Regressions’, American Economic Review, 82(4), pp. 942–963.
- Mileva, E. (2008), ‘The Impact of Capital Flows on Domestic Investment in Transition Economies, ECB Working Paper No. 871, February.
Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.