Tag: gender inequality

Potential Climate Change Impacts on Women’s Vulnerability in Georgia

20230508 Potential Climate Change Poster 02

Climate change can increase the vulnerability of women to various risks, including natural disasters, food insecurity, water scarcity, and health problems. Women may also face unique challenges in accessing resources and services, which can limit their ability to adapt to a changing climate. Developing countries, with their more traditional gender roles, are even more likely to experience disproportionate impacts of climate change on women, and Georgia is no exception. Thus, the country needs to address this problem through a comprehensive approach which accounts for the social, economic, and environmental factors that contribute to gender inequality.

Introduction

According to Georgia’s fourth national communication report to the United Nation’s Framework Convention on Climate Change, the negative impacts of climate change on ecosystems and the economy can hinder Georgia’s path toward sustainable development. Therefore, a key focus for the country should be to develop climate-resilient practices and reduce the vulnerability of communities exposed to these impacts.

The climate scenarios in the communication report present a worrying picture of warming trends in the country, mainly due to increased temperatures in the last summer and autumn seasons, as depicted in Figure 1 (MEPA, 2021). Such alterations in weather patterns often lead to glacier retreat, water scarcity, coastal erosion, and biodiversity loss in different regions of Georgia (ibid).

Figure 1. Average summer and winter temperatures in Georgia, 1900-2021.

Source: Climate Change Knowledge Portal (World Bank, 2021).

An increasing body of international research has demonstrated that climate change can have adverse effects on agricultural production, food security, water management, and public health. Furthermore, research has revealed that these effects are not gender-neutral, with women and children being among the most affected groups (World Bank Group, 2021).

Climate Change Impacts on Women – A Georgian Perspective

Women in developing countries like Georgia experience various impacts of climate change, which affect them differently than men. The effects might vary according to region or community, but some common signs can be identified. The main channels through which women are disproportionally affected by climate change are discussed in the following sub-sections.

Health Impacts

Climate change has a significant effect on human health, with women being more vulnerable due to various cultural, social, and economic factors (Sbiroli et al., 2022). In particular, women appear to be more susceptible to infectious diseases and undernutrition, especially in middle and low-income countries (ibid).

Springmann et al. (2016) found that, by 2050, Georgia could experience about 32.36 climate-related deaths per million due to malnutrition caused by a lack of fruits and vegetables in people’s diets and due to increased health complications associated with undernutrition. In Georgia, malnutrition is a significant gender equality concern. According to the Global Nutrition Report, women in Georgia disproportionally experience exposure to undernutrition translated into underweight. Similarly, women represent the majority of Georgians with obesity (26.8 percent, compared to 22.2 percent among men). Both these issues may be further exacerbated by climate change in the future.

Furthermore, in Georgia, women are more likely to care for sick family members. According to Geostat, 31 percent of women who have sick or dependent family members are involved in providing them care, compared to only 15 percent of the men. This puts women at greater risk of exposure to climate change-induced infectious diseases, given that research has demonstrated an increased risk of such diseases worldwide, including in areas in Europe that have climate profiles similar to Georgia (Mora et al., 2022; Gray et al., 2009).

Figure 2. Prevalence of underweight among adults (>18) in Georgia, 2000-2016.

Source: Global Nutrition Report (2023).

Water and Food Scarcity

Climate change is also known to affect food and water supply through changes in agricultural conditions, droughts, and floods. In developing countries as women are often responsible for food and water supply, they are disproportionally affected by water shortages resulting from climate change (Figueiredo & Perkins, 2013). Women in poor rural households in Georgia are likely to face similar challenges.

Women in Georgia also play a crucial role in agriculture (according to Geostat, 47 percent of workers in agricultural holdings were women in 2021). Fluctuations in temperature and precipitation patterns can reduce crop yields, leading to lower income and food insecurity. This may disproportionately affect female farmers, as access to agricultural technologies, land ownership and lack of necessary knowledge and skills are some of the significant barriers for women involved in agriculture in Georgia (Gamisonia, 2015).

Economic Impacts and Access to Resources

One of the main reasons to why women are disproportionally affected by climate change is that their underlying economic conditions are less favourable than men’s (Yadav & Lal, 2018). In 2021, the majority of people outside the labor force were women (65 percent), while men constituted 35 percent (Geostat). It is important to mention that in the same year, only 33 percent of women were employed in Georgia, compared to 49 percent of men. Additionally, the average salary for women was 1056 GEL (813 GEL in the agricultural sector), while men earned an average of 1538 GEL (1006 GEL in the agricultural sector). Finally, although poverty rates among women in Georgia are slightly lower than among men, 17.1 vs. 17.9 percent respectively (absolute poverty rates in 2021), the poverty data does not account for the gender-biased distribution of household resources. Women face larger barriers in obtaining financial resources (collaterals, loans, etc.) than men because they own less property. For different types of property, only 44 percent are owned by at least one woman, according to the National Agency of Public Registry of Georgia. The corresponding number for men is 56 percent.  Geostat data further indicates that households headed by men make up 63 percent of the total number of households, whereas households headed by women account for only 37 percent. These unfavorable conditions hinder women’s access to vital information and resources required for climate change adaptation and mitigation.

The discussed impacts may be especially prominent for women in poor rural households. Climate change-induced natural disasters are typically more detrimental for households dependent on agriculture (Dagdeviren et al., 2021), especially subsistence farmers and poor agricultural workers (in particular those without access to technology or resources). In Georgia, women are in majority in both these categories.

Natural Disasters and Displacement

Climate-driven disasters are over 14 times more likely to cause fatalities among women and children than men, according to UNHCR (2022). Additionally, women in agrarian societies impacted by climate change are less likely to use adaptive measures, putting them at higher risk of displacement (Palacios, Sexsmith, Matheu & Gonzalez, 2023). Such risks are also likely to pertain to the rural areas of Georgia.

Georgia’s International Obligations and Policies

In previous decades Georgia has made significant progress when it comes to incorporating gender equality and climate change into the policy agenda. In particular, Georgia follows numerous international legislative initiatives regarding sustainable development, gender equality, and climate change.

Georgia is a party to the Paris Agreement and the Beijing platform (a comprehensive roadmap for women’s rights and empowerment, which lists the problems associated with gender inequality and different strategies to overcome them, signed by Georgia in 1995). It is also a signatory of the Gender Action Plan (GAP), adopted a year after the Paris Agreement to integrate gender into targets and increase effectiveness, fairness, and sustainability.

The updated Nationally Determined Contribution (NDC) of Georgia includes a dedicated section on gender and climate change. This section aims to promote gender mainstreaming, encourage equal participation, empower women, build capacity, and develop climate policies that are responsive to gender considerations. Furthermore, the Long-term Low-emission Development Strategies for Paris Agreement parties (including Georgia) has a communication and awareness-raising strategy that seeks to address gender, youth, and people with disabilities in its outreach efforts (United Nations, 2022).

Despite these commitments, Georgia is lagging when it comes to tackling the issues of climate change and gender in coordination. For example, even though Georgia has adopted a Gender Equality Law and Action Plan, it does not address climate change issues. Therefore, municipalities are not required to consider gender aspects of climate change impacts.

Identified Gaps and Policy Recommendations

Despite the number of policies and measures undertaken, unsolved problems hinder the country’s ambition to adhere to gender-mainstreamed climate change-addressed policymaking.

For example, there is a lack of gender-disaggregated data on the impacts of climate change in Georgia, which prevents policymakers from developing targeted strategies to address women’s needs. Therefore, collecting and analyzing disaggregated data with gender-specific impacts in mind is recommended. Additionally, involving women in decision-making and ensuring their participation in climate change efforts is crucial as their unique experiences and perspectives can inform more effective and equitable responses to climate change impacts.

As previously mentioned, climate change in Georgia is expected to exacerbate water and food scarcity, which can disproportionately affect women. Therefore, implementing climate-resilient water management strategies and increasing access to climate-resilient agricultural practices, such as crop diversification and improved irrigation systems, can help increase farm productivity and reduce the adverse impacts of climate change on women.

Furthermore, there is a need to provide women with access to financial resources and services and to address gender-based inequalities that may limit women’s ability to access information and resources necessary for climate change adaptation and mitigation.

Finally, addressing the impacts of climate change on women in Georgia will require a coordinated and sustained effort from a range of stakeholders, including governments, civil society organizations, and local communities, so that women are not left behind in the global effort to address the impacts of climate change.

Conclusion

To effectively address the impacts of climate change on women in Georgia, it is essential to recognize that various social, economic, and cultural factors shape women’s experiences. For example, women in rural areas may face different challenges than women in urban areas; women with few economic means may be disproportionately affected by climate change. Therefore, policies should not only integrate gender-mainstreaming, but also account for these heterogeneities, to ensure that different parties of the society are adequately addressed within the climate change policy agenda.

References

  • Dagdeviren, H., Elangovan, A., & Parimalavalli, R. (2021). Climate change, monsoon failures and inequality of impacts in South India. Journal of Environmental Management.
  • Figueiredo, P., & Perkins, P. E. (2013). Women and water management in times of climate change: participatory and inclusive processes. Journal of Cleaner Production, 188-194.
  • Gamisonia, N. (2015). Climate Change and Women. Heinrich Böll Stiftung.
  • Global Nutrition Report. (2023). Global Nutrition Report. https://globalnutritionreport.org/resources/nutrition-profiles/asia/western-asia/georgia/
  • Geostat. https://www.geostat.ge/en
  • Gray, J. S., Dautel, H., Estrada-Peña, A., Kahl, O., & Lindgren, E. (2009). Effects of Climate Change on Ticks and Tick-Borne Diseases in Europe. National Library of Medicine.
  • MEPA. (2021). Fourth National Communication of Georgia to the UNFCCC. Tbilisi: UNDP.
  • Mora, C., McKenzie, T., Gaw, I. M., Dean, J. M., Hammerstein, H. v., Knudson, T. A., Franklin, E. C. (2022). Over half of known human pathogenic diseases can be aggravated by climate change. Nature Climate Change.
  • National Agency of Public Registry of Georgia. https://www.napr.gov.ge/
  • Palacios, H. V., Sexsmith, K., Matheu, M., & Gonzalez, A. R. (2023). Gendered adaptations to climate change in the Honduran coffee sector. Women’s Studies International Forum.
  • Sbiroli, E., Geynisman-Tan, J., Sood, N., Maines, B. A., Junn, J. H.-J., & Sorensen, C. (2022). Climate change and women’s health in the United States: Impacts and opportunities. The Journal of Climate Change and Health.
  • Springmann, M., Mason-D’Croz, D., Robinson, S., Garnett, T., Godfray, H. C., Gollin, D., Scarborough, P. (2016). Global and regional health effects of future food production under climate change: a modelling study. National Library of Medicine.
  • UNHCR. (2022). Gender, Displacement and Climate Change. Potsdam Institute for Climate Impact Research.
  • United Nations. (2022). Long-term Low-emission Development Strategies. United Nations.
  • World Bank Group. (2021). Climate Risk Country Profile: Georgia. World Bank Group.
  • World Bank. (2021). Climate Change Knowledge Portal. https://climateknowledgeportal.worldbank.org/country/georgia
  • Yadav, S. S., & Lal, R. (2018). Vulnerability of women to climate change in arid and semi-arid regions: The case of India and South Asia. Journal of Arid Environments, 4-17.

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Economic and Social Context of Domestic Violence: Research Shared at the 2022 FROGEE Conference

20220511 Economic and social context of domestic violence Image 01

This brief summarizes the research papers presented at the 2022 FROGEE conference “Economic and Social Context of Domestic Violence”, which took place on May 11, 2022. It was organized by the Stockholm Institute of Transition Economics (SITE) together with the Centre for Economic Analysis (CenEA) and the FREE Network. Two additional briefs related to the conference are published on the FREE policy briefs website – a brief on gender-based violence in conflict based on the panel discussion, and another sharing preliminary results from the recent FROGEE survey.

While the concerns about domestic violence (DV) and intimate partner violence (IPV) have been gaining prominence since the start of the COVID-19 pandemic, they were further exacerbated by the devastating events happening in Ukraine. Times of crisis or conflict makes the issue more severe, however, gender-based violence is sadly prevalent at normal times too, and a major portion of it is DV and IPV. Limiting violence towards women requires understanding the determinants of DV and IPV and the channels through which they take effect. With this in mind, the Stockholm Institute of Transition Economics (SITE) together with the Centre for Economic Analysis (CenEA) and the FREE Network invited researchers to present their work relating to the economic and social context of domestic violence. This brief provides an account of what was shared at the conference.

Prevention of Domestic Violence: What Works and What Doesn’t?

Three presented studies geared toward evaluating policies aimed to limit violence against women.

Dick Durevall shared his findings on IPV and national policy programs in Colombia, focusing on the laws and policies implemented based on the UN campaign “UNiTE to End Violence Against Women” between 2010 and 2015. To evaluate the effect of these policies, he adopts a differences-in-differences design and compares provinces that had a gender policy before this renewed effort with those that did not. This builds on the idea that provinces that had an IPV policy strategy before UN recommendations were adopted are more efficient in implementing new such policies. It is found that self-reported physical violence falls from 20% to 16% between 2010 and 2015 in provinces that had IPV policies while this number remained at 18% in those that did not. While sexual violence decreased in both groups, provinces with IPV policies experienced a stronger reduction.

Accurate reporting is a key issue when it comes to IPV since it makes up the foundation for designing effective policy. Due to long-lasting and tiresome judicial procedures, threats, social barriers, or emotional costs, victims might choose not to report. Looking at the introduction of specialized IPV courts in Spain, Marta Martínez-Matute presented her paper on how institutions shape reporting. Bestowed with specialized staff, victim-oriented resources, and a swifter judicial process, these courts are specifically designed to deal with IPV cases. Martínez-Matute and co-author investigate if these resources make women more prone to report IPV by exploiting the sequential rollout of specialized courts. They use yearly court-level data on individual IPV cases between 2005 and 2018 in a staggered difference-in-differences framework with matched control districts. The results show that the introduction of an IPV court in a judicial district reduces the length of the judiciary process by 61% and increases the reported number of IPV cases by 22%. Ensuring that this increase is not fully driven by a rise in false reports, it is found that the share of dismissed IPV cases remains unchanged. Further, it is shown that the increase is driven by less severe IPV cases and not aggravated IPV offenses or homicides.

A distinctive feature of DV crimes is that there is a high degree of recidivism, with many women experiencing repeated violence from the same partner. However, little is known about how police should respond to such crimes to ensure safety to those victimized. From one perspective police arrests deter repeated DV crimes since they incapacitate perpetrators and allow police to investigate while offering safety to victims. However, some argue that this safety is merely temporary and that DV arrests might trigger offenders to retaliate against victims, leading to increased long-term DV. Against this reasoning, Victoria Endl-Geyer presented a study on the relationship between police arrests and DV dynamics in the UK. It uses highly granular administrative data on the population of DV incidents in the West Midlands which allows the researchers to observe the detailed information on the incidents’ timing and location as well as on police officers and their crime scene responses. It adopts an instrumental variables approach using the dispatch team’s previous propensity to arrest (measured as the weighted average arrest rate of officers in the team) as an instrument. The results provide evidence consistent with a deterrence effect. While regular OLS estimates show an insignificant impact, the IV results indicate that an on-scene arrest decreases repeat DV incidents by 25-26 percentage points. They find that the effect is the same when restricting the sample to incidents reported by a third party, supporting that this effect is not driven by a change in reporting behavior.

Factors of Domestic Violence and its Mechanisms

Other studies presented at the conference focused less on policy assessment and more on identifying the determinants of IPV and DV.

Losing or obtaining a job causes a shock in the intra-relationship dynamics and changes the economic power balance between spouses. Deniz Sanin presented her paper on the DV effect of women’s employment in the context of Rwanda. Following the government-initiated National Coffee Strategy in 2002, the number of coffee mills in Rwanda increased from 5 to 213 over the course of ten years. This natural experiment allows studying the effect of having a paid job as it captures the shift from unpaid labor on a family farm to paid work on a mill, keeping job-related skills constant. Using survey data on both DV and labor market outcomes along with administrative data on DV hospitalizations, the study adopts a staggered difference-in-differences strategy and compares women before and after mill opening as well as within and outside of the catchment area (a buffer zone surrounding the mill). The results show that upon mill opening, the probability of working for cash increases and that of self-reporting domestic violence in the past 12 months decreases by 26% (relative to the baseline of 0.35). During the harvest months, the only period of the year in which the mills operate, hospitals are significantly less likely to admit DV patients compared to the month before the harvest season, suggesting that the initial results are not driven by reporting bias. Looking at the mechanisms, she finds evidence supporting an increased bargaining power explanation – women in catchment areas who are exposed to mill opening are more likely to have a bigger say in household decisions such as larger household purchases and contraception usage. Increases in husbands’ earnings and decreased exposure are also ruled out as possible channels since a decline in DV is also found among spouses where the husband works in a different occupation with no change in earnings.

Rather than studying the impact of women’s employment status, Cristina Clerici shared a related paper that focuses on male unemployment. To investigate its effect on IPV, the study exploits the exogenous shock to employment caused by COVID-19 containment measures in Uganda. The authors collect individual-level data via phone surveys on the incidence of IPV among food vendors, including information on husbands’ sector of employment. To identify a causal DV effect of male employment exit, the authors distinguish between two groups of women with similar pre-lockdown experiences of abuse: those with spouses employed in sectors where operations were halted by COVID-19 lockdowns (construction workers, taxi drivers, etc.) and those with spouses who were unaffected (food vendors, farmers, etc.). The results show that male unemployment increases the probability of experiencing physical violence by 4.9 percentage points, corresponding to a 45% increase relative to the average likelihood. The effect cannot be explained by increased exposure (the man being more at home) – affected and unaffected women spend on average an equal number of nights in the market, which could be used as a coping mechanism. This suggests it is the change in unemployment status itself that drives the increase in DV.

While most of the literature on domestic abuse has documented that its drivers often come from changing life conditions of the victim or perpetrator, there is broad anecdotal evidence that exogenous events can lead to exacerbations in domestic violence as well. Ria Ivandic presented her paper that documents a causal link between major football games and domestic violence in England. The authors use a dataset on the universe of calls and crimes in the Greater Manchester area. The data provides a time series on the incidence of different types of domestic abuse with information on the timing, relationship to the accused, and individual characteristics of the victim and perpetrator, including whether the perpetrator was under the influence of alcohol at the time of the incident. They adopt an event study approach focusing on the hours surrounding a game and document a substitution effect in that the two-hour duration of a football game is associated with a 5% decline in DV incidents. However, following the game, the initial decrease is offset as DV incidents start increasing and culminate after 10-12 hours, eventually leading to an aggregate positive effect which constitutes a 2.8% hourly increase on days when games are played.

The authors argue that alcohol consumption, rather than emotions, is the main mechanism through which domestic violence is affected by sporting events. Supporting this hypothesis, they first find that the outcome of the game or the associated element of surprise (measured using the ex-ante probability of winning a game through betting markets) does not affect the probability of DV occurring. Second, they show that the increase in DV following a game is solely driven by an increase in alcohol-related DV incidents, while those committed by non-alcoholized men remain constant. Further strengthening this finding, it is shown that for games scheduled early in the day, when perpetrators can start drinking sooner and continue throughout the day, they find a significant increase in DV incidents committed by alcoholized perpetrators while this is not the case for late-scheduled games.

The Role of Women’s Empowerment

In the literature on gender-based violence, there is a common disposition to think about women’s empowerment as a central element of DV mitigation. However, theories point in opposite directions making the effect of women’s economic empowerment rather unclear. On one end of the spectrum, there are bargaining theories indicating that an increase in women’s employment opportunities or income should have a negative effect on DV by creating outside options or increasing the bargaining power in a relationship. At the other end, there are backslash theories arguing that enhancing women’s financial empowerment may further exacerbate violence by undermining the role of the breadwinner, triggering male partners to retaliate with the use of violence in order to restore the power balance. Going in the same direction, theories of instrumental violence point towards that the male partner might also use violence to extract resources.

In her keynote lecture, Bilge Erten outlined the evidence relating to DV and women’s empowerment and discussed to what extent and in which contexts these theories are supported.

The evidence of a positive or negative effect of empowerment may depend on which aspect of it is studied. Education is seen as an important one because it has the potential to raise women’s self-awareness of IPV, increase the likelihood of matching with a well-educated partner (which is negatively correlated to abusive behavior), and improve labor market outcomes. Although evidence is scarce in this area, Erten shared her own findings on the causal effect of education reform on IPV in Turkey. In line with instrumental violence theories, it is found that, while women in cohorts affected by the reform performed better in the labor market, they experienced more psychological violence and financial control behavior, and there was no sign of an effect on DV attitudes, partner-match quality or marriage decisions.

What we know about women’s empowerment and DV is also different across countries. When it comes to the effect of employment, findings from developed countries are generally consistent with bargaining theory explanations while what is found in the developing world is more mixed. This is also the case for studies on unilateral divorce laws – while a negative effect on IPV has been documented in the United States, a positive effect of these laws is found in Mexico.

Assessing the literature on the income effect leads to a somewhat ambiguous verdict too. Although generally, most studies confirm that overall violence declines with women’s income, there is often heterogeneity in the effect. It has for instance been found that the sign of the income effect from cash transfers on DV changes from negative to positive as the size of the transfer increases.

Finally, Erten provided some important policy considerations. There is evidently a widespread backlash problem that can arise after a policy intervention of the types discussed above. Policymakers need to think more about monitoring and protecting victims from more violence when implementing such a policy. Further research assessing post-intervention is also needed to identify interventions that are the most effective in minimizing domestic violence. In particular, a change in broad social norms around gender roles should be a desirable outcome, to the effect that a new, improved status of women in society and in the household becomes more culturally acceptable and needs not lead to backlash. In the case of expressive violence (that is not a rational, calculated response but rather a compulsion in the heat of the moment), mental health interventions should also be considered.

Concluding Remarks

As highlighted by the 2022 FROGEE conference, domestic violence not only has been put in the spotlight following the pandemic or the ongoing conflict in Ukraine, but is widespread across the globe in regular conditions too. The mixed findings shared at the conference suggested that policies limiting gender-based violence should be designed with respect to the cultural and social setting where they are to be implemented as the heterogeneity is very high across contexts. Although research has come a long way, the conference stressed that there is much more to be done, in terms of not only knowledge but also the political will and commitment to seriously address the issue of gender-based violence.

The presentations held at the conference can be viewed at this link and a separate policy brief based on the panel discussion on gender-based violence in times of conflict can be found here.

List of Speakers

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Understanding the Economic and Social Context of Gender-based and Domestic Violence in Central and Eastern Europe – Preliminary Survey Evidence

20220511 Economic and social context of domestic violence Image 02

This brief presents preliminary findings from a cross-country survey on perceptions and prevalence of domestic and gender-based violence conducted in September 2021 in eight countries: Armenia, Belarus, Georgia, Latvia, Poland, Russia, Sweden and Ukraine. We discuss the design and content of the study and present initial information on selected topics that were covered in the survey. The collected data has been used in three studies presented at the FROGEE Conference on “Economic and Social Context of Domestic Violence” and offers a unique resource to study gender-based violence in the region.

While the COVID-19 pandemic has amplified the academic and policy interest in the causes and consequences of domestic violence, the Russian invasion of Ukraine has tragically reminded us about the gender dimension of war. There is no doubt that a gender lens is a necessary perspective to understand and appreciate the full consequences of these two ongoing crises.

The tragic reason behind the increased attention given to domestic violence during the COVID-19 lockdowns is the substantial evidence that gender-based violence has intensified to such an extent that the United Nations raised the alarm about a “shadow pandemic” of violence against women and girls (UN Women on-line link). Already before the pandemic, one in three women worldwide had experienced physical or sexual violence, usually at the hands of an intimate partner, and this number has only been increasing. The tragic reports from the military invasion of Ukraine concerning violence against women and children, as well as information on the heightened risks faced by war refugees from Ukraine, most of whom are women, should only intensify our efforts to better understand the background behind these processes and study the potential policy solutions to limit them to a minimum in the current and future crises.

The most direct consequences of gender-based and domestic violence – to the physical and mental health of the victims – are clearly of the highest concern and are the leading arguments in favour of interventions aimed at limiting the scale of violence. One should remember though, that the consequences and the related social costs of gender-based and domestic violence are far broader, and need not be caused by direct acts of physical violence. Gender-based and domestic violence can take the form of psychological pressure, limits on individual freedoms, or access to financial resources within households. As research in recent decades demonstrates, such forms of abuse also have significant consequences for the psychological well-being, social status, and professional development of its victims. All these outcomes are associated with not only high individual costs, but also with substantial social and economic costs to our societies.

This policy brief presents an outline of a survey conducted in eight countries aimed at better understanding the socio-economic context of gender-based violence. The survey, developed by the FREE Network of independent research institutes, has a regional focus on Central and Eastern Europe, with Sweden being an interesting benchmark country. The data was collected in September 2021 in Armenia, Belarus, Georgia, Latvia, Poland, Russia, Sweden and Ukraine. The socio-economic situation of all these countries irrevocably changed with the Russian invasion of Ukraine on 24 February 2022, the ongoing war, and its dramatic consequences. The world’s attention focused on the unspeakable violence committed by the Russian forces in Ukraine, the persecution in Belarus and Russia of their own citizens who were protesting against the invasion, and the challenges other neighbouring countries have faced as a result of an unprecedented wave of Ukrainian refugees. This change, on the one hand, calls for a certain distance with which we should judge the survey data and the derived results. On the other hand, the data may serve as a unique resource to support the analysis of the pre-war conditions in these countries with the aim to understand the background driving forces behind this dramatic crisis. In as much as the gender lens is necessary to comprehend the full scale of the consequences of both the COVID-19 pandemic and the war in Ukraine, it will be equally indispensable in the process of post-war development and reconciliation once peace is again restored.

Survey Design, Countries, and Samples

The survey was conducted in eight countries in September 2021 through as a telephone (CATI) survey using the list assisted random digit dialling (LA-RDD) method covering both cell phones and land-lines, and the sampling was carried out in such a way as to make the final sample representative of the respective populations by gender and three age group (18-39; 40-54; 55+). The collected samples varied from 925 to 1000 individuals. The same questionnaire initially prepared as a generic English version was fielded in all eight countries (in the respective national languages). The only deviations from the generic version were related to the education categories and to a set of final questions implemented in Latvia, Russia and Ukraine with a focus on the evaluation of national IPV legislation.

Table 1 presents some basic sample statistics, while Figure 1 shows the unweighted age and gender compositions in each country. The proportion of women in the sample varies between 49.4% in Sweden and 55.0% in Belarus, Russia and Ukraine. The average sample age is between 43 (Armenia) and 51 (Sweden), while the proportion of individuals with higher education is between 29.3% in Belarus and 55.4% in Georgia. The highest proportion of respondents living in rural areas could be found in Armenia at 62.9%, while the lowest was in Georgia at 24.1%. Figure 1 illustrates good coverage across age groups for both men and women.

Table 1. FROGEE Survey: samples and basic demographics

Source: FROGEE Survey on Domestic and Gender-Based Violence.

Figure 1. FROGEE Survey: gender and age distributions

Source: FROGEE Survey on Domestic and Gender-Based Violence.

Socio-economic Conditions and Other Background Characteristics

To be able to examine the relationship between different aspects of domestic and gender-based violence to the socio-economic characteristics of the respondents, an extensive set of questions concerning the demographic composition of their household and their material conditions were asked at the beginning of the interview. These questions included information about partnership history and family structure, the size of the household and living conditions, education and labour market status (of the respondent and his/her partner) and general questions concerning material wellbeing. In Figure 2 we show a summary of two of the latter set of questions – the proportion of men and women who find it difficult or very difficult to make ends meet (Figure 2A) and the proportion who declared that the financial situation of their household deteriorated in the last two years, i.e. since September 2019, which can be used as an indicator of the material consequences of the COVID-19 pandemic. We can see that the difficulties in making ends meet are by far lowest in Sweden, and slightly lower in the other EU countries (Latvia and Poland). The differences are less pronounced with regard to the implication of the pandemic, but also in this case respondents in Sweden seem to have been least affected.

 Figure 2. Making ends meet and the consequences of COVID-19

a. Difficulties in making ends meet


b. Material conditions deteriorated since 2019

Source: FROGEE Survey on Domestic and Gender-Based Violence.

Perceptions and Incidence of Domestic and Gender-Based Violence and Abuse

Frequency of differential treatment and abuse

The set of questions concerning domestic and gender-based violence started with an initial module related to the different treatment of men and women, with respondents asked to identify how often they witnessed certain behaviours aimed toward women. The questions covered aspects such as women being treated “with less courtesy than men”, being “called names or insulted for being a woman” and women being “the target of jokes of sexual nature” or receiving “unwanted sexual advances from a man she doesn’t know”, and the respondents were to evaluate if in the last year they have witnessed such behaviours on a scale from never, through rarely, sometimes, often, to very often. We present the proportion of respondents answering “often” or “very often” to two of these questions in Figure 3A (“People have acted as if they think women are not smart”) and 3B (“A woman has been the target of jokes of a sexual nature”). We find significant variation across these two dimensions of differential treatment, and we generally find that women are more sensitive to perceiving such treatment. It is interesting to note that the proportion of women who declared witnessing differential treatment in Sweden is very high in comparison to for example Latvia or Belarus, which, as we shall see below, does not correspond to the proportion of women (and men) witnessing more violent types of behaviour against women.

Figure 3. Frequency of differential treatment (often or very often)

a. People have acted as if they think women are not smart


b. A woman has been the target of jokes of a sexual nature

Source: FROGEE Survey on Domestic and Gender-Based Violence.

Questions on the frequency of witnessing physical abuse were also asked in relation to the scale of witnessed behaviour. Here respondents were once again asked to say how often “in their day-to-day life” they have witnessed specific behaviours. These included such types of abuse as: a woman being “threatened by a man”, “slapped, hit or punched by a man”, or “sexually abused or assaulted by a man”. The proportion of respondents who say that they have witnessed such behaviour with respect to two of the questions from this section are presented in Figure 4. In Figure 4A we show the proportion of men and women who have witnessed a woman being “slapped, hit or punched” (sometimes, often or very often), while in Figure 4B being “touched inappropriately without her consent”. Relative to the perceptions of differential treatment the incidence of a woman being hit or punched (4A) declared by the respondents seems more intuitive when considered against the overall international statistics of gender equality. The proportions are lowest in Sweden and Poland, and highest in Armenia and Ukraine. However, the perception of inappropriate touching by men with respect to women (Figure 4B) shows a similar extent of such actions across all analysed countries.

Figure 4. Frequency of abuse (sometimes, often or very often)

a. A woman has been slapped, hit or punched by a man


b. A woman has been touched inappropriately, without her consent, by a man

Source: FROGEE Survey on Domestic and Gender-Based Violence.

Perceptions of abuse

The questions concerning the scale of witnessed behaviours were complemented by a module related to the evaluation of certain behaviours from the perspective of their classification as abuse and the degree to which certain types of gender-specific behaviours are acceptable. Thus, for example respondents were asked if they consider “beating (one’s partner) causing severe physical harm” to be an example of abuse within a couple (Figure 5A) or if “prohibition to dress as one likes” represents abuse (Figure 5B). This module included an extensive list of behaviours, such as “forced abortion”, “constant humiliation, criticism”, “restriction of access to financial resources”, etc. As we can see in Figure 6, with respect to the clearest types of abuse – such as physical violence – respondents in all countries were pretty much unanimous in declaring such behaviour to represent abuse. With respect to other behaviours the variation in their evaluation across countries is much greater – for example, while nearly all men and women in Sweden consider prohibiting a partner to dress as he/she likes to be abusive (Figure 5B), only about 57% of women and 36% of men in Armenia share this view.

The questionnaire also included questions specifically focused on the perception of intimate partner violence. These asked respondents if they knew about women who in the last three months were “beaten, slapped or threatened physically by their intimate partner”, and the evaluation of how often intimate partners act physically violent towards their wives.

Figure 5. Perceptions of abuse: are these examples of abuse within a couple?

a. Beating causing severe physical harm


b. Prohibition to dress as one likes

Source: FROGEE Survey on Domestic and Gender-Based Violence.

A further evaluation of attitudes towards violent behaviour was done with respect to the relationship between a husband and wife and his right to hit or beat the wife in reaction to certain behaviours. In Figure 6 we show the distribution of responses regarding the justification for beating one’s wife in reaction to her neglect of the children (6A) or burning food (6B). The questions also covered such behaviour as arguing with her husband, going out without telling him, or refusing to have sex. As we can see in Figure 6, once again we find substantial country variation in the proportion of the samples – both men and women – who justify such violent behaviour within couples. This was particularly the case when respondents were asked about justification of violent behaviour in the case of a woman neglecting the children. In Armenia as many as 30% of men and 22% of women agree that physical beating is justified in those cases. These proportions are manyfold greater than what can be observed in countries such as Latvia, where 3% of men and women agreed that abuse was justifiable under these circumstances, or Sweden, where only 1% of men and women agreed.

Figure 6. Perceptions of abuse: is a husband justified in hitting or beating his wife

a. If she neglects the children


b. If she burns the food

Source: FROGEE Survey on Domestic and Gender-Based Violence.

Seeking help and the legal framework

The final part of the questionnaire focused on the evaluation of different reactions to incidents of domestic and gender-based violence. Respondents were first asked if a woman should seek help from various people and institutions if she is beaten by her partner – respondents were asked if she should seek help from the police, relatives or friends, a psychologist, a legal service or if, in such situations, she does not need help. In Figure 7 we show the proportion of people who agreed with the last statement, i.e. claimed that it is only the couple’s business. The proportions of respondents who declare such an attitude is higher among men than women within each country, and is highest among men in Armenia (48%) and Georgia (25%). Again, these proportions are in stark contrast to men in Sweden, or even Poland, where only 4% and 8% of men agreed, respectively. Nevertheless, looking at the total survey sample, a vast majority believe that a woman who is a victim of domestic violence should seek help outside of her home, indicating that at least some forms of institutionalised support for women are popular measures with most people.

Figure 7. Proportions agreeing that domestic violence is only the couple’s business

Source: FROGEE Survey on Domestic and Gender-Based Violence.

The interview also included questions on the need for specific legislation aimed at punishing intimate partner violence and on the existence of such legislation in the respondents’ countries. The latter questions were extended in three countries – Latvia, Russia and Ukraine – to evaluate the specific sets of regulations implemented recently in these countries and to facilitate an analysis of the role IPV legislation can play in reducing violence within households. Legislation on domestic violence is relatively recent. During the last four decades, though, changes accelerated in this respect around the world. Legislative measures have been introduced in many countries, covering different aspects of preventing, protecting against and prosecuting various forms of violence and abuse that might happen within the marriage or the family. Research strives to offer evaluations on what legal provisions are most effective, in a setting in which statistics and information are still far from perfect, and as a consequence of the dearth of strong evidence the public debate on the matter is often lively. For legislation to have an effect on behaviour through shaping the cost of committing a crime, on the one hand, and the benefit of reporting it or seeking help, on the other, or more indirectly through changing norms in society, information and awareness are key. For how can deterrence be achieved if people do not know what the sanctions are? And how can reporting be encouraged if victims do not know their rights? The evidence on legislation awareness is unfortunately quite scarce. A survey of the criminology field (Nagin, 2013) concludes that this is a major knowledge gap.

Figure 8 shows the proportions of answers to questions concerning the need for and existence of legislation specifically targeted towards intimate partner violence. We can see that while support for such legislation is quite high (Figure 8A), it is generally lower among men (in particular in Armenia, Russia and Belarus). Awareness of existence of such laws, on the other hand, is much lower, and it is particularly low among women. It should be pointed out that all countries have in fact implemented provisions against domestic violence in their criminal code, but only around half of the population, sometimes much fewer, are aware of that.

Figure 8. Need for and awareness of IPV legislation

a. State should have specific legislation aimed at punishing IPV


b. Country has specific legislation aimed at punishing intimate partner violence

Source: FROGEE Survey on Domestic and Gender-Based Violence.

Recent reforms of DV legislation that were implemented in Russia in 2017, in Ukraine in 2019 and in Latvia just a few months ago (at the time of the survey, the changes were at the stage of a proposal) were the subject of the final survey questions in these countries. We find that awareness of these recent reforms is very low in all three countries, and knowledge about the reform content (gauged with the help of a multiple-choice question with three alternative statements) is even lower. Our analysis suggests that gender and family situation are the two factors that most robustly predict support for legislation, while education and age are associated with awareness and knowledge of the reforms. Minority Russian speakers are less aware of the reforms in both Ukraine and Latvia, in Ukraine are also less likely to answer correctly about the content of the reform, and in Latvia are less supportive of DV legislation in general.

Analyses of this type are useful for policy design, to better understand which groups lack relevant knowledge and should be targeted by, for example, information campaigns to combat DV, such as those many governments around the world implemented during the covid-19 pandemic.

Future Work Based on the Survey

The above is just a small sample of the rich source of information that has resulted from conducting the survey. Already from this simple overview we can see some interesting results. There are, for example, clear differences between men and women in perceptions of how common certain types of abusive behaviour are. However, for many questions differences between countries are larger than those between men and women within a country. Interestingly such differences are also different depending on the severity of the abuse or violence. In Sweden the perception of women being victims of less violent abuse is higher than in some other countries where instead some more violent types of abuse are reported as being more common. This could, of course, be due to actual differences in actual events but it is also possible that there are differences in what types of behaviour are considered to represent harassment and abuse in different societies. More careful data work is needed to try to answer questions like this and many others. Currently there are a number of ongoing research projects based on the survey results, three of which will be presented at the FREE-network conference on “Economic and Social Context of Domestic Violence” in Stockholm on May 11, 2022. Our hope is that this work will help in taking actions to prevent gender-based abuse and domestic violence based on a better understanding of underlying cross-country differences in social norms and attitudes and their relation to socio-economic factors.

About FROGEE Policy Briefs

FROGEE Policy Briefs is a special series aimed at providing overviews and the popularization of economic research related to gender equality issues. Debates around policies related to gender equality are often highly politicized. We believe that using arguments derived from the most up to date research-based knowledge would help us build a more fruitful discussion of policy proposals and in the end achieve better outcomes.

The aim of the briefs is to improve the understanding of research-based arguments and their implications, by covering the key theories and the most important findings in areas of special interest to the current debate. The briefs start with short general overviews of a given theme, which are followed by a presentation of country-specific contexts, specific policy challenges, implemented reforms and a discussion of other policy options.

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Gender Gap Widens During COVID-19: The Case of Georgia

20220411 Gender Gap Widens Image 01

Gender inequality has been a persistent (albeit steadily improving) problem for years. The COVID-induced crisis put women in a disproportionately disadvantaged position, jeopardizing decades of progress achieved towards equality between men and women. However, these effects of the pandemic were not universal across countries. This policy brief aims to evaluate the gender-specific effects of the COVID-19 crisis in Georgia, looking at labor market outcomes and entrepreneurial activities. As expected, the impact of the pandemic was not gender-neutral in this regard, being especially harmful for women. As the Georgian economy rebounds after the crisis, we show that the widened gender gaps are partially offset only in certain aspects. In order to countervail the disproportionate effects of the pandemic, targeted policy measures are needed to stimulate women’s economic activity.

Introduction

Past economic recessions, including the COVID-induced crisis, have never been gender-neutral (e.g., Liu et al., 2021; Ahmed et al., 2020). While economic crises are usually associated with disproportionate negative impacts on labor market outcomes of men compared to women, the impact of the crisis is, debatably, more severe for women-led businesses as compared to their male-led counterparts (e.g., Torres, 2021; Nordman and Vaillant, 2014; Grimm et al.,2012).

The disproportionate labor market outcomes of economic crises are claimed to be due to the fact that men are predominantly employed in cyclical sectors such as construction or manufacturing; therefore, women have to increase their employment during economic downturns as a means of within-family insurance (Alon et al., 2021). The recent COVID-induced crisis, due to its unique nature, turns out to be an exception in this regard. The pandemic and the subsequently-adopted measures primarily adversely affected contact-intensive sectors (where the worker is required to perform tasks in close physical proximity to other people) that predominantly employ women (Mongey, Pilossoph, and Weinberg 2020; Albanesi and Kim 2021). Moreover, large-scale lockdowns increased the burden of unpaid care, which is generally shouldered by women disproportionately (Babych, 2021), leaving less available time for them to work. It should be noted that gender gaps in the labor market were a persistent (albeit steadily improving) problem even before the pandemic (Eurofound, 2016). Therefore, COVID-19 poses a threat jeopardizing the progress achieved in this direction and worsening gender inequality.

COVID-19 brought unprecedented adverse consequences for not only employed workers but entrepreneurs as well. Increased unpaid care and housework pose additional burdens on female top managers, making women-led businesses more vulnerable to the crisis.

The unequal gender implications of the COVID-19 crisis have been widely debated. Growing evidence (Albanesi and Kim 2021; Torres et al., 2021; Alon et al., 2020; Caselli et al., 2020, Fabrizio et al., 2021) attests that, on average, the effects of the pandemic put women in a disproportionately disadvantaged economic position. However, the extent of this effect varies across countries and is absent in some cases (Campa et al., 2021; Torres et al., 2021).

This policy brief aims to examine the gender-specific nature of the COVID-19 crisis in Georgia. With this aim, we study the differential effects of the pandemic on the economic activity of women in terms of labor market outcomes and entrepreneurship. First, we contrast labor market outcomes for Georgian men and women during the COVID-19 crisis. Secondly, we try to assess the magnitude of the disproportionate impact on women-led businesses compared to men-led ones. We calculate gender gaps across different measures of firm-level performance, such as sales revenue, liquidity and owners’ expectations of falling into arrears. Finally, we examine whether there are any signs of recovery yet in 2021 and draw policymakers’ attention to emerging issues.

Labor market highlights

The adverse effects of the pandemic on female employment were conditioned by both supply and demand-side factors. The latter include decreased economic activity, mainly in service-related sectors (hospitality, personal care, etc.) that are dominated by women (Eurofound, 2021). In Georgia, as of 2019, women constituted the majority of workers in sectors such as hospitality (56%), education (83%) and activities of households as employers of domestic personnel (99%) that experienced some of the sharpest declines in employment during 2020. Moreover, women are more likely to be employed in part-time and temporary jobs (14% of women, as opposed to 11% of men, were employed part-time as of 2019, Geostat Labor Force Survey 2019), leaving them more vulnerable during times of crisis.  Supply-side factors were triggered by the unequal burden of unpaid work generally undertaken by women in Georgia, mainly due to cultural reasons as well as the higher opportunity cost of time for men (women in Georgia on average earned 64% of men’s salaries in 2019, Geostat). School and daycare closures and decreased childcare involvement of grandparents increased household responsibilities for women. A UN Women survey-based study showed that in the midst of the pandemic in Georgia, around 42% of women reported spending more time on at least one extra domestic task as opposed to 35% of men (UN Women, 2020). This would naturally lead to more women than men leaving the labor force. Indeed, looking at the data, we see that in one year after the COVID-19 outbreak, women contributed to 98% (48,000 individuals) of the decrease in the Georgian labor force in 2020 (Geostat). Moreover, a close look at the percentage point difference between the labor force participation rates of Georgian men and women reveals a notable growth in the gender gap starting from 2020. The same can be said about employment rates (Figure 2).

Figure 1. Difference between male and female labor force participation and employment rates

Source: Geostat

To further elaborate on the tendencies in employment, Bluedorn et al. (2021) look at the differences between employment rate changes among male and female workers in 38 advanced and emerging economies. Replicating the exercise with the Georgian data, we can observe results similar to those obtained in Bluedorn et al. (2021). In Figure 2, we see differences between female and male employment rate changes. For each gender group, the latter is computed as an absolute difference between the quarterly employment rate and its annual average level from the previous year. Once the difference takes a negative value, implying that the drop in employment was sharper for women, one could say that we observe a “She-cession” phenomenon as termed by Bluedorn et al. (2021). As we can see, in 2020, the employment rate of women fell more than that of men. This widened gender gap was partially offset in 2021.

Figure 2. Employment rate changes by gender (deviation from the previous year average)

Source: Geostat

Remote work: a burden or a blessing for women?

One important aspect of the COVID-19 crisis was a wide-scale switch to remote work. This development had some gender-specific implications as well. The evidence shows that the prevalence of the switch to remote work was higher among women compared to men (41% vs. 37%) in the EU (Sostero et al., 2020). This tendency also holds in Georgia, where 11% of women as opposed to only 3% of men reported usually working from home in the last three quarters of 2020 (Julakidze and Kardava, 2021). It is not clear whether this tendency can be explained by gender-related occupational differences of male and female jobs (Dingel and Neiman, 2020; Boeri and Paccagnella, 2020; Sostero et al., 2020) or, rather, different personal choices of men and women working in the same occupations. Interestingly, across different countries, we observe a positive correlation between gender inequality (as measured by the Gender Inequality Index) and gender differences in the switch to remote work (measured by the ratio of the share of remote workers among female and male workers). To account for this observation, we can stipulate that gender differences in switching to remote work might be explained by differing gender roles in households, and in society at large, across countries (as proxied by the gender inequality index).

Figure 3. Relative prevalence of remote work among female and male workers

Source: Eurostat, Statistics Sweden, Statista, Geostat, UNDP Human Development Reports

Regardless of the reason, remote work is likely to have some important implications on gender roles. However, the directionality of these implications is not straightforward. On the one hand, remote work offers flexibility for women to juggle household and work responsibilities. On the other hand, since women compared to men have been shown to be more likely to use the time saved from commuting to engage in housework, the switch to remote work might increase their “total responsibility burden” (Ransome, 2007) and lead to time poverty (Peters et al., 2004; Hilbrecht, Shaw, Johnson and Andrey, 2008). Indeed, according to CARE International South Caucasus (2020), around 48% of female survey participants in Georgia placed additional effort into housework and childcare in the midst of the pandemic. Moreover, as women are more likely and expected to use remote working as a means of balancing work-life responsibilities (Moran and Koslowski, 2019) their bargaining power at work decreases relative to their male counterparts. This could have some adverse career implications for female workers. Recent enforced lockdowns might pose an opportunity in this regard, as once-remote work becomes something close to a “new normal” employers will likely decrease the penalty for remote workers.

Spotlight on women-led business performance during the COVID-19 crisis

Calamities brought by the pandemic worsened financial outcomes for enterprises, affecting their ability to operate and have stable financial income. Similar to other crises, the pandemic has not been gender-neutral (Liu et al., 2021; Ahmed et al., 2020) in terms of the effect on business performance.

Gaps in the performance of women- and men-led businesses have been prevalent beyond any economic crisis as well, and have been documented in a number of studies (e.g., Amin, 2011; Bardasi et al., 2011), registering gender differences in sales and productivity in favor of men-owned enterprises. As suggested by Campos et al. (2019), these performance gaps may be due to lower levels of capital owned by women as opposed to men, a smaller number of employees hired by women-owned firms, as well as different practices in using advanced business tools and innovation. In addition, the existence of these gender gaps has also been explained as stemming from the prevailing social norms that assign certain obligations to women. Nordman and Vaillant (2014) and Grimm et al. (2012) suggest that unpaid housework and family-care led to a constrained number of hours women could afford to spend on the work and management of firms, negatively affecting their productivity.

According to the Women Entrepreneurship Report (Global Entrepreneurship Monitor (GEM), 2021), the pandemic imposed an additional burden in terms of increasing family-care duties on women. The GEM survey (2021) conducted in 43 countries worldwide shows that the likelihood of enterprise closure is 20% higher for women-led compared to men-led businesses. The higher likelihood of closure reflects the adverse factors that may have hindered the operating capacity of firms. For example, a survey conducted by UNIDO (2020) suggests that, as a result of the Coronavirus crisis, African and Middle Eastern women-led firms experienced diminished revenues. In addition, 41% of women-led firms were short of cash flow and unable to fulfill financial obligations, while only 32% of male entrepreneurs were exposed to the same problem.

More rigorous analysis on this matter has been conducted by Torres et al. (2021) and Liu et al. (2021). They try to examine the asymmetric effects of the COVID-19 crisis on women-led firms in several dimensions utilizing new datasets from the World Bank: COVID-19 Follow-up Enterprise Survey and the World Bank Business Pulse Survey. The findings of Liu et al. (2021) for 24 countries from Central Europe & Central Asia and Sub-Saharan Africa confirm that during the pandemic women-led businesses are subject to a higher likelihood of closure than men-led businesses and that female top managers are more pessimistic about the future than their male counterparts. Finance and labor factors were mentioned to be the major contributors to these disadvantages; for example, women-led businesses were found to be less likely to receive bank loans compared to men-led businesses. Lastly, the disadvantages experienced by women-led firms were claimed to widen in highly gender-unequal economies and developing countries. Torres et al. (2021) study the impact of the early phase of the COVID-crisis on gender gaps in firm performance for 49 mostly low- and middle-income countries. The results demonstrate that women-led businesses experienced a greater reduction in sales and lower liquidity compared to their male counterparts, which has been reflected in a higher likelihood for women-led companies in several sectors to fall into arrears. On the other hand, as a response to changing circumstances, women-led firms were found to be more likely to increase the utilization of online platforms and make product innovations. Nevertheless, they struggled to obtain any form of public support.

The impact of the pandemic on firms was not gender-neutral in Georgia

The pandemic-induced fragile environment had an adverse impact on entrepreneurs in Georgia– the effects of the shock were significantly more severe for female entrepreneurs than for their male counterparts. In order to assess the gender differences in the impact of the pandemic on firms, we utilize firm-level data on Georgian enterprises from the second round of the World Bank COVID-19 Follow-up Enterprise Survey, conducted in October – November 2020.

Following the methodology as presented in Torres et al. (2021), we assess whether there are differences in the magnitude of reduction in sales revenue (self-reported percentage change in sales revenue one month before the interview as compared to the same period of 2019) and available liquidity for women- and men-led businesses, and whether falling into arrears in any outstanding liabilities is more expected by female top managers (in the next six months from the interview).

Depending on the type of dependent variable, continuous or binary, either Ordinary Least Squares (OLS) or Probit models are estimated, respectively. Along with the gender of the top manager of firms, we also control for sector and firm size. The Georgian database contains a total of 701 enterprises (581 SMEs and 120 micro-businesses).

Table 1. Magnitude of the disproportionate impact of COVID-19 on women-led businesses in Georgia, October-November 2020

Source: The World Bank COVID-19 Follow-up Enterprise Survey, Second Round. Author’s calculations. ***Significant at the 1% significance level; ** significant at the 5% significance level.

Table 1 presents the results of the regression analysis of gender differences among Georgian enterprises in terms of the impact of the pandemic. As observed, women-led businesses reported larger declines in sales, revenues, and liquidity. The predicted drop in sales was 18 percentage points (pp) higher for enterprises with a female top manager than for men-led firms. The larger drop in sales should have been reflected in the reduced cash flow availability and in hardship to cover operating costs. Indeed, as the results demonstrate, women-led enterprises are on average 12.9 pp more likely to have reduced availability of liquidity. This may explain women’s negative future expectations. Moreover, the average predicted probability of expecting to fall into arrears is 11.3 pp higher for women-led firms in Georgia as compared to men-led businesses.

The unequal effect of the COVID-19 crisis on women-led businesses might have been fueled by the disproportionate burden of unpaid care and housework shouldered by women in Georgia, leaving less time available for work and managing enterprises. On the other hand, as Torres et al. (2021) claim, female business owners tend to employ more female workers (the social group more exposed to the unequal burden of the pandemic) than male owners. This, in turn, could further hamper the productivity of women-led businesses and increase their vulnerability to economic shocks.

On the road to recovery

2021 has been characterized by a rather rapid recovery for the Georgian economy, as evidenced by the 10.6% (preliminary estimate) annual growth rate of real GDP. Signs of recovery can also be observed in the labor market – the labor force increased by 4% (YoY) in the 3rd quarter of 2021, while employment was also characterized by a growing trend (1%, YoY).

Along the lines of economic recovery, the gender gap in the labor market also seems to be narrowing. For instance, the steadily growing gap between male and female labor force participation rates seems to stagnate over 2021 (Figure 1). Moreover, as is illustrated in Figure 2 above, the difference between women’s and men’s employment rate changes is positive in 2021, meaning that the employment rate was increasing more (or decreasing less) for women. If this tendency persists, we might stipulate that the disproportionate effects of the COVID-19 crisis on female employment are on the way to recovery.

To examine whether Georgian firms have experienced concurrent movement in their performance along with the economic recovery, we utilize third-round data (from September 2021) of the World Bank COVID-19 Follow-up Enterprise Survey and scrutinize whether the gender differences have narrowed since the previous round of the survey (Table 2).

Table 2. Magnitude of the disproportionate impact of COVID-19 on women-led businesses in Georgia, September 2021.

Source: The World Bank COVID-19 Follow-up Enterprise Survey, Third Round. Author’s calculations. ***Significant at the 1% significance level.

Although the third-round survey data suggests that the predicted percentage drop in sales sharply declined for both men- and women-led businesses, the findings are not statistically significant and therefore cannot claim any signs of recovery in the gender gap in this respect. No signs of recovery are observed in terms of average predicted probability of reduced liquidity of firms and expectations of falling into arrears, either. Gender gaps in these two indicators still persist and are as strong in magnitude as in the second-round survey estimates (from October-November 2020). It seems that despite the economic rebound, not all traces of the pandemic crisis for firms have been eradicated from a gender perspective.

Conclusion

The pandemic came with high economic costs. It hit women disproportionately harder, adversely affecting their employment and entrepreneurial prospects. The unequal burden of the COVID-crisis shouldered by women in Georgia could be one of the reasons for the massive labor force dropouts among female workers and poor performance of women-led businesses. Georgian enterprises with female owners experienced a significantly larger decline in sales compared to their male-owned counterparts, consequently suffering from a shortage of cash flow and fears of falling into arrears.

Despite the great rebound in growth after the initial COVID-19 shock, the pandemic-associated increase in the gender gap seems to have been only partially offset in Georgia. In particular, there is a larger positive upsurge in women’s employment rate, as well as a diminishing difference between male and female labor force participation and employment rates. Following the ongoing recovery in sales revenue of Georgian enterprises (though the predicted gender difference was statistically insignificant), the gender gap in sales is shrinking too. But, in spite of the economic rebound, differences in available liquidity and expectations of falling into arrears have not yet been eradicated, indicating that the adverse influence of the pandemic on women still persists. It leaves female entrepreneurs a still more vulnerable group, which could be of special interest to policymakers to ease their liquidity problems.

Policies should also be directed towards encouraging women to become more economically active. In this regard, remote work seems to pose an opportunity if coupled with affordable childcare support policies.

References

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Female Entrepreneurs in Transition: Social Norms, Double Burden and the Next Generation

Photo Of People Doing Handshakes representing Belarusian higher education

Nowadays, it is evident that equal participation of both men and women in entrepreneurial activity can boost the world economy, create more diverse teams, and decrease social inequality. While the subject of women-led enterprises is widely discussed and explored, the portraits of women who stand behind these companies are still not complete. This brief focuses on the social aspects a businesswoman faces in a transition economy such as Belarus: Who is she? What are her social roles? And how do entrepreneurial families differ from average families in Belarus?

Introduction

Female entrepreneurship is widely discussed as one of the potential engines of sustainable economic growth (World Bank, 2018; IFC, 2017). This brief utilizes a recent wave of the Global Entrepreneurship Monitor survey to shed light on the key aspects of female entrepreneurship in Belarus – a transition economy with a relatively short history of private entrepreneurship. It looks at the social status and social norms surrounding female businesses to better understand the current situation and future trends in this part of Belarusian society.

The data for the analysis is provided by the Global Entrepreneurship Monitor (GEM) surveys conducted in the summer of 2019:

  • Survey of the adult population of Belarus (GEM APS): 2002 respondents aged 18 to 64.
  • Survey of entrepreneurs based on GEM APS: 208 business owners (107 men and 101 women).

Women Are More Willing to Study Hard

Following a long-standing tradition, women in Belarus are likely to obtain higher education. Based on the GEM surveys of the adult population, 35% of respondents have completed a bachelor’s degree (42% of women versus 27% of men) and 1.5% have completed a master’s degree. Among entrepreneurs, 60% of respondents have the first stage of higher education and 15% have the second stage. While most of the interviewed entrepreneurs have higher education (bachelor’s degree), women are more inclined to continue their studies: 19% of female and 11% of male entrepreneurs choose to enroll in master’s programs.

Access to business education is not a problem in Belarus: almost half of the respondents claim that their education is related to the business they run. A similar fraction also report participating in business training programs (with no significant gender differences). A third of respondents report having had a mentor who helped them start a business (42% and 58% of men and women, respectively). Entrepreneurs in Belarus are not inclined to be members of business associations or (in)formal self-support groups for entrepreneurs.

Are Female Entrepreneur Families More Equal?

Most often, an entrepreneur is married and has 1-2 children under 18 years old (this pattern being the same across genders). The majority of Belarusian families are of the so-called “Soviet” type, in which the most important woman’s role is to be a mother and “keep home”. At the same time, it is perfectly normal for women to have a paid job. In the case of preparing food, cleaning the house, and washing clothes, a comparable share of male entrepreneurs and men in the general population answer that most of these responsibilities are usually carried by women (65-68%). In contrast, half of the female entrepreneurs report having an equal distribution of these household duties [Figure 1]. We observe similar patterns in the caretaking of children: 68% of women entrepreneurs claim to have an equal distribution versus 44% of non-business women. This greater intra-family equality of women-entrepreneurs can be partially explained by the fact that businesswomen earn more than Belarusian women do on average.

Figure 1. How do you and your spouse/partner divide the task of cleaning the house and washing clothes?

Source: based on GEM APS 2019

According to data on the daily time use of the population collected by the National Statistics Committee for 2014-2015, women spend twice as much time as men on housekeeping and childcare. But, surprisingly, only 40-45% of women note that the traditional distribution of social roles in the family imposes an unfair constraint on women’s work and career possibilities. Therefore, we document a trend towards equal relations between spouses in households where the wife is an entrepreneur. At the same time, even a typical businesswoman bears a large burden of unpaid work.

A Successful Woman is a Happy Mother and a Wife

The respondents were asked a rather controversial question of what defines a “successful woman” [Figure 2]. Both entrepreneurs and the general population of Belarus were in solidarity in understanding a successful woman primarily as a happy wife and mother (75% of respondents). In second place, in terms of importance, respondents answered that a woman should be an educated and highly qualified professional (about 50% men and 60% women). Only 23% of male and 42% of female entrepreneurs agreed with the statement that a successful woman is, first of all, a successful entrepreneur. Remarkably, 46% of men in the general population survey completely or to a greater extent disagree with this statement, at the same time,  67% of those with children would like their daughter to run a business.

Figure 2. A successful woman is first of all a/an..

Source: Author’s calculations based on GEM APS 2019

Parental Entrepreneurship or Are There Any Predispositions to Become an Entrepreneur?

According to the research on parental entrepreneurship, the probability that children in entrepreneurial families will also have a career in business is 30-200% above that of children from non-entrepreneurial families (Lindquist et al., 2015).  In the case of Belarus, half of the surveyed entrepreneurs indicated that their fathers were employees, while 5-10% and 17-25% reported having fathers in business and leadership positions. By comparison, out of the 2000 respondents in the general population survey, 4-8% and 14-15% reported having fathers in business and leadership positions, respectively. As the difference is not very significant, parental entrepreneurship cannot play a decisive role in becoming an entrepreneur. This fact can be explained by the relative juvenility of Belarussian businesses, the absence of entrepreneurship in the USSR, and the attitude of society towards entrepreneurship in the 90s.

Nevertheless, the Belarusian business environment is changing as well as the social attitude. Among the 2000 respondents in the general population survey, about 68% would like their daughter to own a business, and 82% want such a future for their son. Among entrepreneurs, aspirations about their children’s future are rather predictable: a third of respondents do not make plans for their children and the majority of the remaining want their children to run their own business. Moreover, among those having preferences for their children’s future, both male and female entrepreneurs reached almost 100% consensus regarding their sons. When it comes to their daughters, 95% of women and 80% of men prefer a future in business while 15% of men would like to see their daughter become a homemaker.

Conclusion

Several key findings can be noted when comparing women entrepreneurs in Belarus with those who are not in business. Entrepreneurs are more likely to obtain higher education, both first and second stage; household chores more equally shared in families with women entrepreneurs. Female entrepreneurs more often want a future in business for their children, especially their daughters. Based on the above, it can be expected that a greater involvement of women in business can positively affect the state of gender equality in Belarus and the quality of human capital.

Nowadays, the promotion of entrepreneurship (let alone female entrepreneurship) is not a priority of the current Belarusian government, and independent development actors, who used to support it in the past, are out of the country. For the future, however, I will outline some general recommendations for developing female entrepreneurship (based on Akulava et al., 2020). With regard to education, the popularization of STEM programs among women can positively affect female involvement in entrepreneurial activity. Additionally, promoting examples of successful women-led enterprises will help combat stereotypes and inspire women to venture into entrepreneurship. Last but not least, an equal division of domestic responsibilities will allow women to spend more time on their careers.

References

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Assessing a Model for the Implementation of an Equal Pay Review and Reporting (EPRR) Methodology in Georgia

20211102 Assessing a Model of Equal Pay

Georgia’s gender pay gap has started to attract the attention of the population and policymakers alike. The gap persists despite working women generally reporting better labor-market skills and personal characteristics. It has been argued that this could be the result of systematic gender-based workplace wage discrimination, resulting in unequal pay for equal work. The discussion that ensued highlights how the fight to guarantee equal pay for equal work could benefit from establishing an Equal Pay Review and Reporting Mechanism. In response, the ISET-PI team – after reviewing the best international practices – devised and tested an excel based tool that could help companies and governmental agencies identify, monitor, and fight gender discrimination in Georgia. The main quantitative result of the exercise identified that, should reporting be made mandatory, extending the obligation to companies that employ up to 50 people would make the administrative costs for companies and public administration up to twenty times higher; thus, the usefulness of the tool was found to be substantially limited when applied to smaller companies. Finally, the exercise emphasized the reluctance of companies to provide the data required, leading to the conclusion that the successful implementation of such an initiative would require the enforcing agency to have the legal authority to sanction failures to provide the necessary data.

Introduction

One of the key gender inequality indicators is the gender pay gap – or gender wage gap – calculated as the average difference between the remuneration for men and women in the labor market. Its evolution is monitored worldwide, and closing this gap is considered a key step towards more inclusive and prosperous economies and societies. According to the World Economic Forum, as of 2020, no country (including the top-ranked ones) had yet achieved gender parity in wages.

In Georgia, the unadjusted hourly gender pay gap amounts to 17.7 percent of the average male hourly wage (UN Women, 2020). Moreover, when controlling for personal characteristics of men and women, the adjusted hourly gender pay gap in Georgia is estimated to be 24.8 percent (UN Women, 2020). This implies that women, on average, have better observable labor-market characteristics but are still paid less than men.

These findings prompted a core discussion within the Georgian society on the presence of unequal pay for equal work in Georgia as one of the possible reasons for the gap and how to tackle the problem. The idea of equal pay for equal work entails that individuals in the same workplace are given equal pay if they perform the same type of work. Consequently, this potential source of the pay gap can only be verified at the individual employer level. This is accomplished by calculating the unexplained gender pay gap at the organizational/employer level and validating whether, and why, these differences exist.

Given the attention the topic holds in the national discourse, ISET Policy Institute created and tested an excel tool, built in line with the international best practices and adapted to the Georgian context, to help employers and government offices identify and measure the differences in wages between men and women performing equal work. During this process, the team learned several noteworthy lessons, as summarized in this policy brief.

International Experience

There is growing consensus that transparency is critical when dealing with pay inequality and, therefore, gender pay reporting should become the norm. Since 2010, several (mostly developed) countries have introduced reporting schemes to monitor gender pay gaps, promote awareness about gender equality issues throughout society (particularly among employees), and increase organizations’ accountability to address gender inequalities (Equileap, 2021).

However, the gender pay gap is a key issue for which the disclosure of information remains particularly low. Equileap’s 2021 report revealed that 85 percent of organizations worldwide did not publish information on remuneration differences between female and male workers in 2020.

Three countries, according to Equileap, lead the way in gender pay gap reporting: Spain, the UK, and Italy (Figure 1). In each of these top three countries, reporting is mandatory.

Figure 1. Percentage of organizations publishing gender pay information, per country

Source: Equileap, 2021. The figure only includes countries for which more than 49 surveyed organizations were included in the Equileap dataset.

However, even in these countries, and, more generally, in all countries scrutinized by Equileap but Iceland, firms with 50 or fewer employees are not required to report on gender pay gaps.

The Case of Georgia

Georgian legislation clearly establishes the principle of equal pay for equal work for all employees. The requirement applies to both public and private organizations. Nevertheless, enforcement of the law remains a significant challenge.

At present, Georgia has no reporting requirements regarding employee salaries for private organizations. It has not yet designed a reporting scheme for equal pay for equal work, nor has it assigned the task of collecting this information to any governmental body.

Moreover, Labour Inspectorate representatives state that few wage discrimination cases are currently being filed in the country. The main reason behind this is that norms regarding equal pay for equal work have never been properly specified. In addition, there are no explicit criteria defining the concept of ‘equal work’. Thus, employers and employees alike do not seem to fully understand the phrase – equal pay for equal work.

The Excel Tool

After a careful review of the three tools presently utilized to calculate gender pay inequality (the Swiss Logib, the German Logib-D, and the Diagnosis of Equal Remuneration (DER) tool developed by UN Women), ISET-PI built a Georgian model as a modified version of the DER tool that is adapted to the Georgian context and includes some variables from the Swiss tool.

The tool itself is an excel file with several worksheets. The two main facets are the inputted data sheet and the results sheet. Companies may input information on their employees in the data sheet, and the findings will then be demonstrated in the results sheet. The tool first identifies people performing the same work, and classifies jobs based on their official titles, alongside managerial responsibilities and skill requirements. After individuals are grouped by job, the tool calculates the average salary within each group separately for men and women. Thereafter, the pay gap is calculated based on the average salary for the two gender groups.

With the support of the Employers’ Association, several companies of all sizes were approached to test the tool. Unfortunately, only a few agreed to participate, and just two completed the trial: one small-sized enterprise (with 50 or fewer employees) and a large-sized enterprise (with 250 or more employees).

While low participation rates have significantly limited our analysis, we still obtained several important insights which are discussed in the next subsection.

Findings

Firstly, it is important to note that companies’ willingness to share anonymized salary data was very low, even among the companies that completed the test.

Secondly, the usefulness of the tool for obtaining a comprehensive view of equal pay for equal work in small companies (with 50 or fewer employees) appeared fairly limited as few people within the same firm perform the same job.

Thirdly, we performed a simple cost assessment exercise to evaluate the compliance costs – to both companies and the government – of collecting and reporting the gender pay gap. We found that extending the data collection requirement to small companies would increase the compliance costs by up to 20 times (high-cost scenario) compared to an example where small companies are exempt. This is because there are many more small companies in Georgia (146,802), than those classified as medium or large ones (2,752 and 609, respectively).

In addition, during the implementation of the exercise, we became aware of the following:

  • Under the existing legal provisions, it would be extremely difficult to introduce the EPRR in a mandatory format – no governmental agency could sanction companies for failing to comply.
  • Opting for the mandatory option and sanctioning the emergence of unequal pay in certain job categories could incentivize companies to manipulate the data input. In this case, therefore, it would be ill-advised to provide the full tool to companies, as they could more easily adjust data inputting to obtain more favorable indicators through successive iterations.

Conclusion

Setting up an EPRR system is one way to contribute to the implementation of the equal pay for equal work principle.

Designing the Georgian Model for the Implementation of an Equal Pay Review and Reporting Methodology generated several useful insights that might prove valuable for policymakers in Georgia and other developing countries:

1) The EPRR instrument can be utilized for the analysis of gender pay gaps within companies with more than 50 employees. Within smaller companies, evaluating the gender pay gap significantly increases the costs to society, while providing rather limited additional information.

2) The decisions about whether to provide the analytical part of the tool to companies, and whether reporting should be voluntary or mandatory should be taken jointly. If the goal is to provide an instrument to the agency enforcing the equal pay for equal work principle and to facilitate appeals from workers, the tool should be made mandatory. However, in this case, companies should only provide the input data, without having access to the part of the tool that assesses pay gaps at the job level. On the other hand, if the goal of the reform is to support willing companies in their efforts to eliminate unequal pay for equal work conditions, a non-mandatory form may be preferable. In this instance, companies should have access to the full version of the tool. This would allow them to better understand the dynamics that lead to unequal pay and thus put in place internal remedial actions.

3) If the goal is to provide a tool to the agency enforcing the equal pay for equal work principle, it is crucial that any gaps in the associated legislation are closed. As such, the enforcing agency should be capable of sanctioning failures to provide the required data, and prosecuting violations of the equal pay for equal work principle.

Finally, it is important to note that testing the application of the equal pay for equal work principle at the company level through an EPRR system, while useful for identifying potential causes of the gender pay gap and the existence of gender disparities within companies, is just a first step in a longer and more complex process. Once disparities are identified, both companies and enforcing agencies should follow up with additional research and analysis to determine whether these disparities are linked to discriminatory practices, and what type of remedial options could be adopted.

References

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Dimensions of Well-being

20210920 Dimensions of Well-being Image 01

This brief summarizes the insights shared in the online workshop “Dimensions of Well-being“, where participants presented and discussed their latest research relating to the dimensions of well-being. The two-day workshop was organized by the Stockholm Institute of Transition Economics (SITE) as part of the Forum for Research on Gender Economics (FROGEE) and took place on 28-29 June, 2021.

Introduction

It has been roughly 18 months since the first cases of Covid-19 were reported in Europe. So far the total number of deaths worldwide has passed 4.4 million (John Hopkins University, 2021), unemployment is trending upward in most countries (ILOSTAT, 2021), roughly half of the world’s students have been affected by school closures (UNESCO, 2021), and an alarming increase in domestic violence has been reported across the globe (UN Women, 2020).

It is safe to say that this pandemic crisis has had a multifaceted impact on our lives. Identifying what factors contribute to overall well-being and understanding how they interact with one another is central in designing and implementing solid and effective recovery policies.

Stockholm Institute of Transition Economics invited international experts to an online workshop where they discussed and presented their recent research relating to the dimensions of well-being. The workshop was organized as part of the Forum for Research on Gender Economics (FROGEE).

Well-being in a Pandemic

The government response policies intended to contain the spread of Covid-19 have undoubtedly had a major impact on society. However, estimating the overall effect of these policies on individuals’ well-being is not necessarily straightforward. Economic support policies likely have a positive effect on income and decrease poverty. But at the same time, other responses such as lockdowns and mobility restrictions may not only have an opposite effect on these outcomes but also influence other known determinants of well-being such as social life or education.

Anthony Lepinteur, researcher at the University of Luxembourg, presented his recent work on the well-being consequences of the pandemic policy responses in Germany, France, Spain, Italy, and Sweden. Lepinteur and co-authors link survey data on subjective well-being measures to data on government economic policy and stringency indices. The former index records financial policies such as income support, furlough schemes, and debt relief while the latter measures the strictness of Covid-19 containment and closure policies. The results show that more stringent policies reduce life satisfaction, and this negative effect is stronger for women, the unemployed, and those with relatively high incomes. Economic support policies are found to have no significant impact on reported life satisfaction.

As many countries have experienced major disruptions in many sectors of their economy, concerns have been raised about deteriorating labor markets and the effect this might have on living conditions and, ultimately, the well-being of individuals. Knar Khachatryan, associate professor at the American University of Armenia, shared research studying the impact of Covid-19 on multidimensional deprivation from labor market opportunities in Armenia. Knachatryan and co-authors base their analysis on two surveys from 2018 and 2020. To measure labor market opportunities, they adopt the “Alkire-Foster method” to develop a multidimensional index of labor market deprivation – a basket of indicators explaining an individual’s degree of labor market opportunities (e.g. education, employment status, income, type of work contract, and union membership). With respect to this index, they find that education is the most important determinant of multidimensional labor market deprivation – those having less than a bachelor’s degree are very likely to be deprived in terms of labor market opportunities. The results also show that the pandemic has widened the gender gap in labor opportunities. The number of people classified as deprived has increased more for women than men during the pandemic. This is primarily because women experienced stronger income reductions and more frequent job losses.

Thesia Garner, researcher at the U.S. Bureau of Labor Statistics, discussed how ex-ante levels of well-being have affected the outcomes of economic support policies during the pandemic. More specifically, her study investigates the role of individual’s well-being in determining their reported use of economic impact payments (EIP) in the U.S. Garner and co-author assess well-being using both objective measures (e.g. income sources, employment status) and subjective ones (e.g. depression, financial difficulty, expectations about job-loss or eviction). The findings show that those who report lower levels of subjective well-being are more likely to use the EIP to pay off debt, and this likelihood increases as the well-being measures worsen. Respondents who report having experiences of financial difficulty and negative expectations about the economy are more likely to spend the stimulus on nondurables and tend to allocate it to a wider range of spending categories.

In contrast to the U.S. and most other countries in the world, Belarus’ government offered very little support to its citizens during the pandemic. Lev Lvovskiy, researcher at BEROC, presented findings on how different sectors of the Belarusian economy and society were affected by the pandemic. Using the BEROC/Satio survey data, Lvovskiy and co-authors examine that the country still had sharp drops in mobility and economic shocks mainly caused by lockdowns of major trade partners. The pandemic significantly increased the probability of income reductions and they show that financial distress associates with the incidence of depression of Belarusians.

Gender and Wellbeing

Another central topic discussed at the workshop concerned the gender aspects of well-being and other related topics from gender economics.

An essential channel through which gender differences in well-being can arise is unequal representation in politics. Sonia Bhalotra, professor at the University of Warwick, presented a study on the relationship between maternal mortality and women’s political power in 174 countries. Maternal mortality is the leading cause of death and disability for women aged 15-44, and significantly higher in low-income countries – at levels similar to what high-income countries had in the early 1900s. Bhalotra and co-authors document that the costs of providing access to prenatal health services, antibiotics, and skilled birth attendance are relatively low. They therefore argue that there are likely other barriers to adopting these solutions. Male policymakers might have a weaker preference for preventing maternal mortality or less information on its prevalence and treatment. To gain insight, the authors use a staggered event-study approach and study the effect of gender quota implementations on the maternal mortality ratio (MMR, maternal mortality per birth). They find that, in countries that adopted quotas, the MMR declined by 10% following implementation, and this effect is stronger for larger quotas. Focusing on the mechanisms, the results show that gender quotas lead to a 5-8 percentage point (p.p.) increase in skilled birth attendance, a 4-8 p.p. increase in prenatal care utilization, 6-7 % decline in birth rates, and an increase in girl’s education by 0.5 years.

Elizaveta Pronkina, researcher at Université Paris-Dauphine, also shared findings relating to gender and politics but from a historical perspective.  Her research studies historic institutional differences across communist regimes and women’s work experiences. The paper focuses on Lithuania and Poland, two countries that experienced different gender policies under a communist regime. After the second world war, Lithuania was controlled by the central government of the Soviet Union while Poland’s government was able to preserve its independence although being part of the Soviet bloc. Based on anecdotal evidence, the two countries had the same religious and political policies but different enforcement – Lithuania faced a hard and Poland a soft form of communism. To isolate the impact of the Soviet policies on women’s life decisions and account for differences in the countries’ pre-communist era, the authors only include regions that were part of the Russian empire until the end of the first world war. The findings show that women living under the Soviet regime were more likely to educate themselves and have on average two additional years of work experience (by 50 years of age).

A productive environment and reliable social interactions at work are also likely to be formative elements of people’s well-being, and gender might factor in here. Yuki Takahashi,  PhD candidate in economics at the University of Bologna, presented his paper on how being corrected by others affects one’s willingness to collaborate with them in future work, as well as gender differences in these responses. Takahashi conducts a quasi-experimental design in which roughly 3000 participants individually and collectively solve a puzzle. The setting allows the researcher to observe individual ability, number of corrections, as well as whether the corrections were good (i.e., a mistake was corrected), or bad (i.e., a good move was corrected). The study analyzes how the different factors affect an individual’s likelihood of being selected as a collaborator in a last puzzle-solving stage where both participants win cash earnings based on joint performance. The results show that both genders respond negatively to a correction, but women more so than men. Men are less likely to collaborate with a person who has corrected their mistake, particularly men with high ability. The gender of the corrector is found not to matter.

Domestic violence (DV) is another gender aspect of well-being that has become particularly concerning during the pandemic. For many victims, lockdowns and curfews have meant more exposure to their perpetrator. Mobility restrictions have also implied more social isolation from family members and friends as well as increased economic distress, two other factors known to exacerbate DV. In a preliminary study presented by Damian Clarke, associate professor at the University of Chile, he and co-authors address the relationship between DV and quarantines in Chile. They use longitudinal data on police DV hotline calls and use of women’s shelters to measure DV incidence, criminal complaints of DV to police to measure reporting, and mobile phone data to measure mobility. Exploiting municipal variation in the timing of lockdown entry and exit, the study shows that lockdowns lead to more DV incidence and less reporting. DV shelter use increased on average by 11% with entry and reversed with exit. DV calls to the police hotline increased by 86% and persists after lockdown exit. DV crime reports decrease by 5% and increases by 10% with exit. Moreover, the authors document that lockdowns activate both DV mechanisms – increased economic distress and decreased mobility. In municipalities where lockdowns had a stronger impact on unemployment and mobility, they also find larger changes in DV.

Expectations About the Future and Parenthood

Two other studies presented at the workshop discussed the relationship between future expectations and well-being. Claudius Garten, researcher at the Technical University of Dortmund, presented findings on the role of homeownership. Garten and co-authors utilize individual-level survey data from 2007 covering 14 European countries. It contains information on homeownership status and wellbeing measures expressed as respondents’ expectations about future living standards five years from today. They find that expectations about future living standards are higher among homeowners relative to renters and strongly associated with the value of housing assets, suggesting that material security through housing ownership works as a channel for future wellbeing. Garten further argued that since most countries included in the sample have experienced rising house property prices and increased rents since 2007, the divergence between renters and owners is likely to be even more significant today, especially in urban areas.

The second presentation that discussed expectations about well-being in later life was by Alina Schmitz, researcher at the Technical University of Dortmund. Unlike housing, which is seen as a form of material security, Schmitz’s study focuses on the role of health infrastructure quality. Availability of care services may be seen as a safety net in case of illness and care dependency and should thus have a positive effect on wellbeing. The study performs a multilevel analysis on the individual, regional and, country level using micro-survey data on individuals’ life satisfaction and macro-data on the availability of long-term care beds, covering 96 regions from six European countries in 2015. The results show that the quality of care infrastructure is significantly related to the wellbeing of those aged above 50. Moreover, care infrastructure is particularly important for the wellbeing of those with health limitations (i.e. those who require that infrastructure either now or in the future).

Parenthood is another factor that is commonly thought of as a source of happiness. Contrary to this idea, European populations are aging rapidly and the young today have fewer children than the generations before them. The reason why people choose to have few children could be several – e.g. high opportunity costs and/or low benefits of having a large family. Is the fertility rate we see in the developed world today a result of the well-being-maximizing decisions of individuals? This is the main question asked in the paper presented by Barbara Pertold-Gebicka, assistant professor at the Institute of Economic Studies at Charles University. Her study utilizes European survey data to investigate the effect of having an additional unplanned child in five developed countries. To measure the effect of an additional unplanned child and deal with the fact that happy individuals tend to have more children, Pertold-Gebicka and co-author compare people who had twin births in their second pregnancy with parents of two children. Apart from life satisfaction, the most common wellbeing measure, the authors construct a second measure of wellbeing denoted as the happiness index – normalized value summarizing five questions about feelings over the last 5 months, interpreted as the relative frequency of positive feelings. They find no significant effect of having a third child on the well-being of parents. However, when separately looking at groups divided by age of children, they find that the effect of having an additional child on well-being is negative for fathers of younger children and positive for those of teenagers. For the parents of younger children, they show that the negative effect of having a third child is likely driven by increased feelings of nervousness and problems relating to accommodation.

Measuring Inequality and Social Deprivation

Some aspects of wellbeing such as feelings of unfairness or social connections can be quite ambiguous to study as they depend on context and are hard to quantify.

Nicolai Suppa, researcher at the Centre for Demographic Studies at the UAB, presented his research aimed to improve the measurement of deprivation in social participation (DSP) and complementing previous work with an additional outcome variable measuring a different dimension of deprivation. The study uses German survey data to measure how often common social activities are performed and then uses an intersectional approach (similar to the “Alkire-Foster method”) to assign individuals as deprived based on if and how often they practice these activities. The findings show that while the DSP measure correlates positively both with income poverty and material deprivation measures, it identifies a different sample of individuals. Being deprived in terms of social participation is associated with a significant loss of life satisfaction, a magnitude comparable to the loss of being unemployed.

Ingrid Bleynat, researcher at Kings College London, also discussed how to improve measurement but presented a study focusing on a different dimension of well-being, inequality. While quantitative approaches may give little account of the detailed mechanisms of inequality and its multidimensionality, qualitative studies often focus on a subset of the population which make results difficult to generalize. Bleynat and co-authors suggest a mixed approach, combining quantitative and qualitative assessments of inequality. They utilize neighborhood-level data on average household income in Mexico City to randomly select five households in each decile of the income distribution and conduct semi-structured interviews in these households to better understand the nuances of inequality. Based on these interviews they construct two qualitative measures. The first is called inequality of lived experiences and measures qualitative experiences in work, education, and health services across the income distribution. The second is called lived experiences of inequality, and measures feelings of stigma, discrimination, and social hierarchy across gender, ethnicity and location. The quantitative data confirms that Mexico City is highly unequal across the income distribution in terms of not only income but also social factors such as housing, health and food security. The results concerning the qualitative measures, such as inequalities in lived experiences or lived experiences of inequality confirm the existing understanding – e.g., that households belonging to the lower deciles are more likely to be mistreated in the public health sector, have a hostile school environment, and worse working conditions, or that women across the income distribution bear most of the childcare responsibilities, – but provide nuanced details on the interaction between material inequality and the reported experiences.

Conclusion

There is no doubt that the impact of Covid-19 on our well-being has been many-sided, and the presentations of the workshop have clearly demonstrated the broad spectrum of related problems and concerns, as well as their variation across institutional, social, political, economic, and cultural contexts.

Although we are well underway, further research and comprehensive data collection on how people have coped with and responded to the pandemic is needed to design sensible recovery policies and incentivize governments to implement them.

On behalf of the Stockholm Institute of Transition Economics, we would like to thank the experts who shared their insightful research and participated in “Dimensions of Well-being“.

List of Participants

Part 1 | Online Workshop on Dimensions of Well-being

Part 2 | Online Workshop on Dimensions of Well-being

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Covid-19 and Gender Inequality in Russia

20200514 Covid-19 and Gender Inequality in Russia FREE Network Policy Brief Image 01

Gender inequality is a complex phenomenon characterized by significant and persistent differences in social and economic indicators for women and men. In connection with the Covid-19 pandemic and unprecedented quarantine measures around the world, economists are thinking not only about the obvious global consequences for the global economy but also about the indirect effects, including those through gender-related changes in the labor market. What will the consequences of this crisis on the labor market be in the long run, especially on its gender and family-related components? In this brief, we look at the potential effects of the Covid-19 epidemic and the associated quarantine on gender inequality in Russia.

Introduction

Gender inequality is a complex phenomenon characterized by significant and persistent differences in social and economic indicators for women and men. These may be differences in access to education and medicine, labor market participation, wages, entrepreneurship, participation in politics and public administration, and the distribution of domestic unpaid labor within the family. Reducing gender inequality (like any other form of inequality) correlates with increases in GDP.

The prevalence and scale of gender inequality is, on average, lower in developed countries than in developing countries, and although there is a general tendency for gender gaps to narrow over time, this does not happen simultaneously and equally in all countries. According to the Global Gender Gap Index (2020), which ranks more than 150 countries, the five countries with the best indicators include Iceland, Norway, Finland, Sweden, and Nicaragua, while Congo, Syria, Pakistan, Iraq, and Yemen are in the very bottom. As of 2020, Russia is located approximately in the middle, being the 81st, right between El Salvador and Ethiopia.

In connection with the Covid-19 pandemic and unprecedented quarantine measures around the world, economists are thinking not only about the obvious global consequences for the global economy but also about the indirect effects, including those through gender-related changes in the labor market. A study of World War II, for example, shows that even short-term gender differences in the labor market can have long-term consequences (Goldin and Olivetti, 2013). What will the consequences of this crisis on the labor market be in the long run, especially on its gender and family-related components? In this brief, we look at the potential effects of the Covid-19 epidemic and the associated quarantine on gender inequality in Russia.

Heterogeneous Cross-Sectoral Effects

Economists are now discussing two main channels that can influence gender inequality (Alon et al., 2020). The first one works through differential risk of losing jobs and salaries for women and men due to the disproportionate impact of the epidemic and quarantine on sectors which predominantly employ each gender. The direction of this effect is not easy to predict. On the one hand, the current crisis differs from ordinary recessions in that the service sector, where more women are traditionally employed, is now suffering more than usual. However, it is very important to emphasize what kind of services we are talking about: restaurants and salons are not the whole of the Russian economy. According to the Russian Statistical Agency (Rosstat) 49% of all employed women in 2019 worked in three sectors – trade, healthcare, and education. At the same time, hotels, restaurants, and other services (which include hair and beauty salons) provided less than 8% of women’s employment.

Therefore, from the point of view of assessing the risk of job loss, it makes sense to consider state-financed sectors, where employees are likely to be retained, separately. Among the private businesses, two (non-mutually exclusive) types of sectors are likely to suffer the least. First, the critical ones that do not stop their activity during quarantine (for example, food retail, private medical centers). And second, those that are characterized both by a high ability to work “remotely” and continue to have sufficient demand for their goods and services – either directly or through value chains (see e.g. Volchkova, 2020). For example, agriculture, manufacturing and hotels are worse off in this combination than the financial sector, science, administration, and some types of online education. At the level of the individual characteristics of the employee, even when comparing the same occupations, the possibility of remote work positively correlates with the level of education, wealth, working for a company (rather than self-employment), and being female (according to Saltiel, 2020, for developing countries).

According to the same data from Rosstat, it turns out that about 49% of all women and 40% of all men worked in the “state-financed” and “remote-work” sectors (or 69% against 52%, if we add the trade sector). This is of course an overestimate, since not every job within a sector is characterized by state-financing or remoteness, but it likely represents the relative propensity across genders, which is of our interest. This relative propensity is mostly due to the much higher employment of women compared to men in health and education (approximately 4 to 1 in both sectors). In general, this may mean that the risk of job loss is now higher for men, and not for women as was predicted using US data by Alon et al. (2020), given the gender structure of employment by industry in the US. This rough assessment does not account for different opportunities for women and men to quickly find a new job, especially in the areas of high demand. For example, if the need for delivery workers has increased, and men are more likely to take this job, then it may be easier for them to quickly find a new job. This adaptive effect would unlikely overturn the original difference, because the number of such jobs is also limited.

The Effect of Childcare Facilities Closure

The second channel, likely having a multiplicative effect on the first, operates through the unexpected closure of children’s educational institutions (kindergartens and schools). These effects may be different depending on family composition. While before the pandemic, working parents could send their children to kindergarten and school, this opportunity is now completely unavailable. In the case of online education, not all children are independent enough to learn at home, especially primary school students. At the same time, other childcare support (e.g. from nannies, grandparents and other relatives, etc.) can also be significantly limited due to social distancing and self-isolation, although Russia is in a better position in this regard compared to many developed countries because grandparents traditionally help more in raising children. (It is interesting that in developed countries, the possibility of outsourcing household chores – childcare, cleaning, etc. – is one of the important explanatory factors for higher fertility among more educated women, compared with less educated ones, (see Hazan and Zoabi, 2015)).

Naturally, the situation with closed childcare and educational institutions will not affect the productivity of people without young children. According to the latest census in 2010, about 88 million people, which is as much as 75% of the total adult population of the country, do not live together with children under 18 years old. Also, most likely there will not be a big negative effect on families with children where one of the parents (most often the mother) or another individual in the household (a grandparent) took care of the child at home before the quarantine.

For all other families, the critical problem is juggling childcare with work. The most vulnerable categories of the population here are single mothers and single fathers (and there are about 5 and 0.6 million in Russia, respectively), especially those who do not have any outside help.

Among families with small children where both parents work, several important factors can be identified. On the one hand, according to developed countries, even in families where both parents work, women spend more time on household chores and childcare than men (Doepke and Kindermann, 2019). If one believes that the initial factors that affected this distribution of domestic work (such as traditional norms and role models or the relative income of spouses) have not disappeared, then the sharply increased burden of household chores will disproportionately fall on women. This can lead to a decrease in the relative productivity of women compared to men in the labor market and a greater risk of dismissal. In the long run, this can also negatively affect gender inequality, as even a temporary exit from the labor market may be accompanied by human capital losses and a worse career path in the future.

The Interaction of Both Effects

On the other hand, the opposite situation is also possible. If, due to the disproportionate effect of quarantine on various sectors of the economy, which has been discussed above, women have a lower risk of losing their jobs, then it is possible that at least temporarily, a significant part of the childcare will fall on men. This situation can also happen in families where the woman works in critical sectors of the economy (especially in healthcare) and the man works remotely from home.

Economists have suggested several mechanisms for the effect of short-term additional interaction between fathers and children on long-term participation in their upbringing: there is more information about children’s needs, learning-by-doing, and greater attachment to children. For example, the data from Canada shows that the introduction of 5 weeks of parental leave for fathers led to a more even distribution of domestic labor in households and a greater likelihood of the mother’s participation in the labor market, even 1-3 years after the fact (Patnaik, 2019). Moreover, even if there are not many families like this in the country, the new social norms can gradually spread in society through so-called “peer effects”. Dahl et al. (2014), for example, show using Norwegian data that the brothers and colleagues of men who took parental leave were 11-15% more likely to take it in the future, relative to brothers and colleagues of men who did not take such leave.

Other Hypotheses

Another major consequence of the epidemic and quarantine is the potential upsurge in domestic violence. Several European countries have already noticed an increase in such crimes (European Parliament, 2020), and some crisis centers in Russia have also reported an increase in calls to helplines. Economists identify different triggers for this behavior (Peterman et al., 2020). This may be a direct consequence of quarantine, which increases the time spent by the potential victim and abuser in a closed space, and the inability to seek immediate help, both psychological and medical. Indirect effects can also work through an increased risk of depression and post-traumatic stress syndrome, which were well documented for previous epidemics such as SARS and swine flu. and that may happen due to job loss, reduced income, general economic uncertainty, or a direct fear of getting sick.

These effects disproportionately affect women (and children); therefore, additional resources should be dedicated to identifying such crimes, strengthening support structures for women, and increasing the availability of reporting options without attracting the attention of an abuser (for example, such a warning system may be installed in pharmacies – a place where a woman can go to alone).

Economists have yet to accurately measure and test all these mechanisms, which interact with each other in complex combinations, but it is now clear that very different scenarios are possible, including the positive ones – of a long-run decrease in gender inequality.

References

  • Alon T.,  Doepke M., Olmstead-Rumsey J., and Tertilt M. “The impact of Covid-19 on gender equality”, Covid Economics, Issue 4, 14 April 2020.
  • Dahl G.B., Løken K.V., Mogstad M. “Peer Effects in Program Participation”, American Economic Review 104(7): 2049–2074 (2014).
  • Doepke M. and Kindermann F. “Bargaining over Babies: Theory, Evidence, and Policy Implications”, American Economic Review, 109(9): 3264–3306 (2019).
  • Goldin C. and Olivetti C. “Shocking Labor Supply: A Reassessment of the Role of World War II on Women’s Labor Supply”, American Economic Review, 103(3): 257-262 (2013).
  • Hazan M. and Zoabi H. “Do highly educated women choose smaller families?” Economic Journal, 125(587): 1191-1226 (2015).
  • Patnaik A. “Reserving Time for Daddy: The Consequences of Fathers’ Quotas”, Journal of Labor Economics, 37(4): 1009-1059 (2019).
  • Peterman A., Potts A., O’Donnell M., Thompson K., Shah N., Oertelt-Prigione S., and van Gelder N. “Pandemics and Violence Against Women and Children”, Center for Global Development working paper, 1 April 2020.
  • Saltiel F. “Who can work from home in developing countries?” Covid Economics, Issue 6, 17 April 2020.
  • Volchkova N. “Who should receive government support during Covid-19 crisis”, in “Economic Policy during Covid-19”, April 2020.
  • European Parliament. “COVID-19: Stopping the rise in domestic violence during lockdown”, Press Release  7 April 2020.
  • Rosstat, “Russian census 2010”.
  • Rosstat, “Russian labor force survey 2019”.

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

How Are Gender-role Attitudes and Attitudes Toward Work Formed? Lesson from the Rise and Fall of the Iron Curtain

20190114 How Are Gender-role Attitudes Image 01

Gender differences in attitudes toward work and gender-role attitudes are important determinants of gender inequality in the labor market. In this brief we show that these attitudes vary considerably across countries and can also change within the same country over a relatively short time period. We then present evidence that politico-economic regimes that make substantial effort to bring women into the labor market can shape these attitudes: gender differences in attitudes toward work decrease, and gender-role attitudes become less traditional. Cultural norms with long historical roots are not necessarily invariant to large shocks, and policies aimed at raising women’s presence in the labor market can activate virtuous cycles of increasing female employment. 

Gender inequality and cultural attitudes

Levels of gender inequality in the labor market differ considerably worldwide, even among countries at similar levels of economic development. Policies, technology, and economic conditions have long been shown to play an important role in explaining cross-country and regional differences in gender inequality. More recently, researchers have emphasized the role of cultural attitudes, such as women’s attitudes toward work and gender role attitudes (i.e. the beliefs that individuals hold regarding the appropriate roles of men and women in societies). Fortin (2008), for instance, finds that gender differences in attitudes towards work account for part of the existing gender wage gap in the US.  Further, Fernández et al. (2004) show that differences in gender-role attitudes partly explain existing variation in female labor force participation. Given that gender differences in attitudes toward work and gender-role attitudes contribute to explain gender inequality in the labor market, economists have recently started studying the origins of these attitudes and their sources of variation over time.

In this policy brief we first document variation across space and over time in gender differences in attitudes toward work and gender-role attitudes; then, we present evidence that politico-economic regimes that put emphasis on women’s inclusion in the labor market can shape these attitudes.

Gender-role attitudes and attitudes toward work across space and over time

The World Values Survey (Inglehart et al., 2014) asks questions, among others, about the importance of work in one’s life, and about one’s beliefs on the appropriate roles for women and men in society.

Based on these questions, we measure gender differences in the importance given to work, and levels of agreement with statements regarding gender roles.  Below we show that such measures vary considerably among a sample of countries in Europe and Central-Asia, as well as within countries over time.

Figure 1 shows gender differences in the percentage of survey respondents who reported that work was very important or rather important to them in the survey wave of 1995-1998. There is substantial cross-country variation in whether men or women give more importance to work, and in the magnitude of the gender difference. Moreover, the underlying variation across women is larger than across men (data not shown): the minimum and maximum values among men are 84% (in Georgia) and 97.5% (in Bosnia), whereas the respective values for women are 77% (in Georgia) and 96.6% (in Macedonia).

Figure 1. Gender differences in attitudes toward work

Source: Data are from the 1995-1998 wave of the World Values Survey. Individuals are asked the following question: Please say, for each of the following, how important is work in your life, and the options given are Very important, Rather important, Not very important, Not at all important. Countries selected are those in Europe and Central Asia where the question was asked in the 1995-1998 wave.

Figures 2 and 3 show variation across countries in gender role attitudes. The share of respondents who agree with the statement “A working mother can establish just as warm and secure a relationship with her children as a mother who does not work “varies from a minimum of 47% in Poland to a maximum of 93% in Finland. The share of respondents who agree with the statement “Both the husband and wife should contribute to household income” varies from a minimum of 78% in Armenia and Finland to a maximum of 98% in Albania.

Figure 2. Working mother: warm relationship with her children.

Source: Data are from the 1995-1998 wave of the World Values Survey. Individuals are asked the following question: People talk about the changing roles of men and women today. For each of the following statements I read out, can you tell me how much you agree with each?. Do you agree strongly, agree, disagree, or disagree strongly? A working mother can establish just as warm and secure a relationship with her children as a mother who does not work. Countries selected are those in Europe and Central Asia where the question was asked in the 1995-1998 wave.

Figure 3. Husband and wife should both contribute to income.

Source: Data are from the 1995-1998 wave of the World Values Survey. Individuals are asked the following question: People talk about the changing roles of men and women today. For each of the following statements I read out, can you tell me how much you agree with each. Do you agree strongly, agree, disagree, or disagree strongly? Both the husband and wife should contribute to household income. Countries selected are those in Europe and Central Asia where the question was asked in the 1995-1998 wave.

A recent strand of the economics literature analyzes the long-term determinants of attitudes and finds that they have very deep historical roots (see Giuliano, 2018). However, attitudes also evolve over time. Figures 4 and 5 show that while in some countries attitudes remain rather stable after 1998, in other countries they change substantially. In Russia, for instance, the gender difference in attitudes toward work has doubled over a period of ten years, with men becoming from 5 to 10 percentage points more likely than women to report that work is important to them. Turning to gender-role attitudes, the percent of respondents who think that a working mother can have a warm relationship with her children has increased the most in countries as different as Macedonia and Spain. The percent of individuals who think that both husband and wife should contribute to income has increased relatively sharply in Moldova, while declining rather substantially in Montenegro and especially in Serbia.

Figure 4. Gender differences in attitudes toward work over time.

Source: See Note to Figure 1.

Figure 5. Gender role attitudes over time.

Source: See Notes to Figures 2 and 3.

The graphs thus suggest that the attitudes considered here vary not only cross-sectionally but can also change over a relatively short time period. A natural question to ask is then: what type of shocks cause a change in gender differences in attitudes toward work and in gender role attitudes?

The role of politico-economic regimes in shaping attitudes

In recent work (Campa and Serafinelli, 2018), we show that politico-economic regimes that focus on women’s inclusion in the labor market can reduce gender differences in attitudes toward work and make gender-role attitudes less traditional. Studying the question of whether politico-economic regimes can change attitudes is difficult, because countries or regions exposed to different regimes are likely very different along many other dimensions, including their history, which is known to shape attitudes. To circumvent this problem, we exploit the imposition of state-socialist regimes across Central and Eastern Europe and their efforts to promote women’s economic inclusion (see Campa and Serafinelli, 2018). First we focus on the socialist regime that emerged in East-Germany in 1949. This regime favored women’s access to tertiary education and to qualified employment through massive childcare provision and other policies that were popular throughout the entire Central and Eastern European region. Conversely, in West-Germany, women were encouraged to either stay home after they had children or take part-time jobs after extended breaks (Trappe, 1996; Shaffer, 1961). Since East and West-Germany before 1949 were part of the same country and as such had a common history and shared institutions, we can compare attitudes in East- and West-Germany after the separation to isolate the impact of different politico-economic regimes on attitudes. In other words, the underlying hypothesis is that attitudes toward work and gender role attitudes in East- and West-Germany were the same before the separation. Such a hypothesis is arguably valid especially because we compare only individuals who, during the separated years, lived relatively close to the East-West border (e.g. within 50 km from the border), and are, thus, expected to have close enough (geography, culture and social norm-driven) preferences and attitudes before the separation.

The results of the comparison can be summarized as follows: (a) due to exposure to a different politico-economic regime, East-German women participated more in the labor market and became more educated than their West-German counterparts; (b) the importance given to work by East-German women increased, which led to a lower gender gap in attitudes toward work with respect to West-Germany; (c) both women and men in East-Germany developed less traditional attitudes than West Germans regarding the relationship of working mothers with their children and the gender division of roles in the household.

In the second part of the paper, we also extend the analysis to a number of transition countries in the Central and Eastern European region. We show that in Central and Eastern Europe between 1945 and 1990 gender-role attitudes became less traditional than in Western Europe.

Conclusion

In this brief we have documented that gender differences in attitudes toward work and gender role attitudes vary substantially across space and can change over a relatively short time period. Since these attitudes affect the level of gender inequality in the labor market, understanding their determinants is important and policy-relevant. In recent work (Campa and Serafinelli, 2018), we exploit the imposition of state-socialist regimes in Central and Eastern Europe and show that individuals exposed to different regimes develop different attitudes toward work and different gender-role attitudes.

Such a finding suggests that policies aimed at increasing women’s participation in the labor market can activate virtuous cycles; namely, such policies might improve the cultural acceptance of female work, thus potentially further raising women’s labor force participation. The evidence from the Central and Eastern European region also suggests that history is not necessarily an excuse for inaction regarding women’s participation in the labor market. While deeply rooted cultural norms can be an obstacle to women’s economic empowerment, these norms are not necessarily absolutely time-invariant, and can respond to important economic and policy shocks.

A caveat to such conclusions is that the evidence presented here is specific to women’s attitudes toward work and attitudes regarding the acceptability of female work. Other attitudes and norms are also important in defining the level of gender equality in a society, such as those involving the division of roles in a couple when both couple members work outside of the home, the acceptability of violence against women, the suitability of women and men to different fields of education. Little is known about these attitudes and more research is needed to understand which policies, if any, can change them.

References

  • Campa, P. and M. Serafinelli (2018), Politico-economic regimes and attitudes: Female workers under state-socialism, Review of Economics and Statistics, Forthcoming
  • Fernández, R., A. Fogli and C. Olivetti (2004), Mothers and sons: Preference formation and female labor force dynamics, Quarterly Journal of Economics 119(4): 1249–1299.
  • Giuliano (2018). Gender: A Historical Perspective, in Oxford Handbook on the Economics of Women, ed. Susan L. Averett, Laura M. Argys, and Saul D. Hoffman, New York: Oxford University Press, forthcoming.
  • Inglehart, R., C. Haerpfer, A. Moreno, C. Welzel, K. Kizilova, J. Diez-Medrano, M. Lagos, P. Norris, E. Ponarin & B. Puranen et al. (eds.). 2014. World Values Survey: Round Three – Country Pooled Datafile Version: www.worldvaluessurvey.org/WVSDocumentationWV3.jsp.
  • Shaffer, H (1981), “Women in the two Germanies: A comparison of a socialist and a non-socialist society.”
  • Trappe, H (1996), “Work and family in women’s lives in the German Democratic Republic”, Work and Occupations 23(4): 354–377.

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

How Should Policymakers Use Gender Equality Indexes?

We look at the development of gender inequality in transition countries through the lens of the Gender Inequality Index (GII), which aims to capture overall gender inequality. Extending the measure back to 1990, we look at the development of the overall index as well as that of its components. We show that, even though gender inequality in transition countries for the most part has decreased since 1990, once overall development is taken in account these countries appear to fare better in 1990 than today. We also caution against relying exclusively on composite indexes to understand patterns of gender inequality. While the desire of policy makers to get one number that captures gender inequality development is understandable, weak correlations of the GII with other indexes (over years when multiple gender inequality indexes exist) as well as across sub-indexes suggests that such an approach has limitations. Finally, we emphasize the need to understand levels as well as trends and underlying mechanisms to better inform policy to improve gender equality.

On Measuring Progress

When studying economic development, or any issue really, one faces the challenge not only of finding the right way to identify and measure what are often complex changes, but also of communicating the bottom line efficiently. This naturally leads to the search for a single metric according to which we can rank progress and follow it over time. In the realm of economic development the standard measure is GDP growth. But, of course, focusing only on GDP leaves out many important dimensions of development, such as health and education.[1] In an attempt to capture these dimensions, while still arriving at a single number that measures development, the Human Development Index (HDI) was developed in the late 1980s. Since then, a number of alternative indexes capturing additional aspects of human wellbeing have been suggested; see the report by the “Commission on the Measurement of Economic Performance and Social Progress” (Stiglitz, Sen and Fitoussi, 2009).

Just as for overall development, there is great interest in single measures that capture the gender dimension of this development. Over the past decades a number of such “gender equality indexes” have been developed by international organizations such as the UNDP, the EIGE (European Institute for Gender Equality) and the WEF (World Economic Forum), to name a few.

These measures receive a lot of attention and in particular the reporting of country rankings tends to have an influence on political and policy discussions. The various indexes proposed differ in what dimensions they include (as will be explained below) and, much as a consequence of this, in the time periods they can cover. In some cases (as will also be shown below) it is possible to extend the time coverage of the indexes, but most of the times it is hard to recover the underlying data.

In this brief we summarize what the most popular indexes tell us about the development of gender equality in transition countries, contrasting these to Western European countries.[2] Whenever we have been able to find the underlying data, we also add to publicly available measures by extending indexes back to early 1990s. We then comment on the development of gender equality in transition countries and, perhaps most importantly, on why an indexes-based analysis should be interpreted with some care.

Gender Equality Before 1990

As has often been pointed out, the Soviet Union and many of the countries in Eastern and Central Europe were, at least in some dimensions, forerunners in terms of promoting gender equality (e.g., Brainerd, 2000; Pollert, 2003; Campa and Serafinelli, 2018). This was mainly due to the high participation of women in the labor market as well as the (official) universal access to basic health care and education.

However, some scholars have suggested that not all aspects of gender equality were as advanced in the countries in the Soviet Union and in Central and Eastern Europe (Einhorn, 1993; Wolchik and Meyer, 1985). Even though women were highly integrated in the labor market, they were also still expected to take care of child rearing and house work (UNICEF, 1999). The gender pay gap and gender segregation in the labor market was also similar to levels found in OECD countries. In addition, despite the high number of women in representative positions in communist party politics, women were rarely found in positions of real power in the political sphere (Pollert, 2003).

Generally speaking, while the communist regimes succeeded in promoting women’s access to the labor market and tertiary education, they failed to eliminate patriarchy (LaFont, 2001). Such a dichotomy gives rise to a broad set of questions regarding gender equality in transition countries as well as the measurement of gender equality in this context. What happened to gender equality, in relation to economic growth, during the transition, when new governments often broke with the tradition of promoting women’s employment and education? Did gender equality enhanced by communism leave a legacy or did underlying patriarchic values characterizing many of the communist societies come to dominate? How should we regard developments of indexes that try to weight several components within a context, such as that of transition countries, where these components may move in different directions from each other, given the dichotomy characterizing gender relations?

The Different Indexes

There are several different indexes that are often quoted in policy discussions. Two important measures are the Gender Development Index (GDI) and the Gender Inequality Index (GII), both calculated by the UNDP and reported annually in the Human Development Report (HDR). A third, more recent index that has received increasing attention is the World Economic Forum’s global Gender Gap Index (GGI), which is published in the yearly Gender Gap Report. These three can serve as illustrations of what gender equality indexes typically try to capture.

The Gender Development Index (GDI) essentially measures gender differences in the Human Development Index (HDI). The HDI in turn aims to capture achievements in three basic dimensions of human development: health (measured by life expectancy), knowledge (measured by expected and mean years of schooling) and living standards (measured by GNI per capita). The GDI then basically tries to assess the relative performance in these three dimensions for men and women respectively. If health (or education, or income)  in the population on average goes up, this improves the HDI. But to the extent that the improvements are felt differently by men and women, this will show in the GDI. There are several potential problems with the measurement of this index, especially when it comes to dividing GNI per capita between men and women (see e.g. Dijkstra and Hanmer, 2000); on the other hand, the index offers a transparent way to connect gender inequality to the HDI measure.

The other UNDP measure, the Gender Inequality Index (GII), was reported for the first time in the 2010 Human Development Report. It was created to address some of the perceived shortcomings of its forerunner, the Gender Empowerment Index (GEM) which had been introduced together with the GDI in 1995 (see e.g., Klasen and Schuler, 2011 for problems with GDI as well as GEM). The GII measures gender inequalities in three dimensions of human development: 1) reproductive health, measured by maternal mortality and adolescent birth rates; 2) empowerment, measured by representation in parliament and secondary education among adults; and 3) economic status, measured by labor force participation. As with the GDI, the areas of health, education, and economic empowerment are present, but the index also considers some aspects of health that are more directly relevant for women, and includes a component trying to capture political participation. The economic measure of labor force participation is also somewhat easier to interpret (and measure) than GNI divided between men and women. As for the GDI, GII country-values from 1995 are available on the UNDP website.  Conveniently for our purpose, most of the underlying data that the index is based on are also made available from the UNDP for the years 1990, 1995, 2000, 2005, and every year between 2010 and 2015, with the only exception of female seat share in parliaments in 1990[3]. We downloaded the latter from the World Bank indicators database[4]. We also added information on the share of women in the 1990 Polish Parliament, from the Inter-Parliamentary Union[5], and on the share of women in the 1990 Georgian “Supreme Council,” from Beacháin Stefańczak and Connolly (2015).

A third more recently developed index is the Global Gender Gap Index. This covers areas of political empowerment, health and survival, economic participation and educational attainment, as measured using 14 different variables. An indicator is available for each of the sub areas covered, which are then weighted together in an overall indicator of the gender gap. The Global Gender Gap Index is clearly more detailed and provides a more nuanced picture of existing gender gaps compared to the GDI or the GII. But this amount of detail also comes with potential costs; it is more difficult to interpret the overall index as there are more underlying components that may change simultaneously, and it is also more difficult to reconstruct the index back in time.

What Does the GII Index Tell Us About Gender Equality in Transition Economies?

Among the above mentioned indexes, we focus on the GII here. Extending this measure when possible allows us to study gender inequality starting from 1990 for a limited set of countries (we expand the sample of countries when looking at different dimensions of the GII separately below)[6]. Figure 1 reports values for the index in box plots, which show the index median, maximum, minimum, 75th and 25th percentile for two groups of countries: transition countries and Western-European countries. When interpreting Figure 1, recall that higher GII values imply more inequality.

Figure 1. The Gender Inequality Index in transition countries and Western Europe, 1990-2015

Source: Own calculations based mainly on UNDP data.

Figure 1 shows that based on the GII, median gender inequality is larger in transition countries than in Western Europe and has been so throughout the entire period since 1990. In both regions the index shows a decreasing trend, after an initial increase in 1995 in the transition countries. Below we will show that this is mainly due to a drop in female representation in national parliaments. The variance of the index scores has declined over time in Western Europe, while it remained mostly unchanged in the transition countries[7].

This first piece of evidence from the data is somewhat at odds with the common notion that transition countries enjoy relatively low level of gender inequality. However, two qualifications are in order here. First, transition and Western European countries are generally at different levels of development. Figure 2 displays the country groups performance in relation to their level of human development. This is done by measuring the difference between their GII ranking and their HDI ranking among all the countries with non-missing GII values in the years considered. The larger the difference, the worse the group performance in terms of gender inequality in relation to its level of development.

Figure 2. Difference between Gender Inequality Index ranking and Human Development Index ranking in transition countries and Western Europe, 1990-2015

Source: Own calculations based mainly on UNDP data.

The trends of transition countries and Western Europe are now opposite. In the former group, in 1990 the median standing in terms of gender equality was better than that in human development; this difference appears to have narrowed over time, and it is close to zero in 2015. Western European countries have instead improved their gender equality in relation to their level of overall human development over the period studied. Put differently, the gains in human development made by former socialist countries since the transition have not translated into comparable gains in gender equality as measured by the GII index.

Second, it is also important to emphasize that, as noted above, according to several scholars the socialist push in favor of gender equality was directed only to certain spheres of women’s lives, namely their economic empowerment. This suggests that a composite index can mask important contrasting patterns among its components.

In Figures 3 to 5 we document that different variables indeed paint quite diverging pictures of gender inequality in transition countries.

Figure 3. Development of adolescent births and maternal mortality, 1990-2015

Figure 4. Development of secondary education and share of women in parliament, 1990-2015.

Figure 5. Labor force participation, 1990-2015

Source: Own calculations based mainly on UNDP data.

In each figure we display box-plots for the three areas covered by the GII: health (measured by teenage births and maternal mortality), empowerment (measured by secondary education and share of women in Parliament) and labor force participation. Looking at the different variables separately also allows us to increase the number of countries significantly, since for many countries only the seat share of women in parliaments is missing in 1990.

As the figures show transition countries in 1990 displayed relatively low levels of gender inequality in labor force participation and secondary education. Over the last 25 years, they have kept improving the latter, while the former has stalled, resulting in Western European countries displaying a higher median level of gender equality in labor force participation for the first time around 2010. Reproductive health, while improving since the transition, is still far from converging to Western European standards. Finally, political representation appears to be responsible for the increase in inequality immediately after the transition that we have noted in Figure 1. While it is hard to compare the meaning of representation in the context of 1990 totalitarianisms to that of the democratic regimes emerged later, during the regime change women de facto lost descriptive representation, which was sometime guaranteed in socialist times by gender quotas (Ostrovska, 1994).

In conclusion, breaking down the GII by its components shows that, while Western European countries have invariantly improved their levels of gender equality since 1990, the trend in transition countries depends on the measure one looks at: women maintained but did not improve their relative status in the labor force, they gained more equality in education and especially in terms of reproductive health, and lost descriptive political representation.

What Does the GII Index (And Other Indexes) Not Tell Us?

The conclusion in the previous paragraph raises the question of which other areas of progress, stagnation or deterioration in gender equality in transition countries that might be overlooked in the GII index. Above, we have summarized two more indexes, the GDI and the Gender Gap Index, which focus on additional dimensions of gender inequality but are more limited in terms of time availability. For the time over which there is overlap between the available indexes, the correlation between the GII index and the GDI and the Gender Gap Index respectively, is roughly 0.60. Interestingly, such correlation is higher in the sample of western European countries (0.64 and 0.68 respectively); when the sample is limited to transition countries, the correlations are down to 0.40 and 0.50 respectively.

Several factors might account for the differences across indexes. Unlike the GII, both the GDI and the Gender Gap Index, for instance, include measures of income inequality. On the other hand, the GDI, as pointed out above, does not account for issues related to reproductive health and political representation. The Gender Gap Index is the only one to include, among the health measures, sex-ratios (typically defined as the ratio of male live births for every 100 female births). This turns out to be especially important for some of the transition countries: in the most recent Gender Gap Report, Georgia, Armenia and Azerbaijan remain among the worst-performing countries globally on the Health and Survival sub-index, due to some of the highest male-to-female sex ratios at birth in the world, just below China’s. This goes hand in hand with very high scores in terms of gender equality in enrolment in tertiary education, for which each of these countries ranks first (at par with a few other countries), having completely closed the gender gap. In fact, women are more likely to be enrolled in tertiary education than men.

The relatively low correlation among the different indexes for the group of transition countries also deserves special attention, because it might be a direct consequence of the peculiar history of women’s rights and empowerment in the region. Since some dimensions of gender equality were fostered through a top-down approach, rather than as the result of demands and needs expressed by an organized society, it is more likely that over the last thirty years elements of modernization coexisted with more traditional forms of gender inequality.

Finally, it is worth pointing out that none of the above indexes accounts for important dimensions of gender inequality such as,: gender violence, division of chores in the household, political representation at the local level, and the presence of women in STEM’s professions (where the largest job creation might happen over the next couple of decades). Once more, some of these measures might be particularly relevant for transition countries. Just to mention one example, gender violence is an urgent issue in a few of the countries in the area[8]. A case in point in this respect is Moldova: in 2017, the country ranked 30th out of 144 countries in the Gender Gap Index. Its rank for the sub-index called “Economic Opportunity and Participation” was 11[9]. The country performs especially well in terms of economic opportunity and participation because women not only participate in the labor market in almost equal rates as men, but they are also relatively fairly represented in professions traditionally less feminized elsewhere, such as “professional and technical workers” and “legislators, senior officials and managers.” At the same time, gender violence appears quite prevailing in Moldova: according to the UN, in 2014 “lifetime prevalence of psychological violence” in Moldova was of 60%. Official country statistics also report that the percentage of ever-partnered women aged 15-65 years experiencing intimate partner physical or sexual violence at least once in their lifetime in 2011 was 46%[10].

While limited in scope, the example above illustrates how some of the available indexes might not capture some important drivers of gender inequality in the region.

Conclusion

In this policy brief, we have reviewed some of the available gender inequality indexes that are commonly used in policy discussion as well as in policy-making.

We have then discussed gender inequality in transition countries focusing on one of these indexes, the Gender Inequality Index, whose span we have extended to the beginning of the transition period. Our analysis has highlighted some points to be mindful of when using comprehensive indexes to discuss gender inequality, especially in transition countries:

  • It can be fruitful to analyze gender inequality indexes in relation to levels of development. Some issues related to gender inequality, such as maternal mortality, are potentially addressed with a comprehensive strategy aimed at overall development. Conversely, other drivers of gender inequality, such as women’s political empowerment or gender violence, might require more targeted policy interventions, since they do not necessary go hand in hand with overall development.
  • While comprehensive indexes can be useful in terms of effective communication, it is often difficult to compress all the potential forms that gender inequality can take into a single index, especially over time. This is due to both conceptual issues and data limitations. Moreover, even when this is done, a comprehensive index can overshadow important sources of gender inequality if it is composed of sub-indexes that move in opposite directions.
  • The previous point can be especially relevant in the context of transition countries, which historically experienced a top-down approach to gender equality, the results of which in the long-term appear to be major advancements in some dimensions of women’s empowerment and contemporary potential backlash in other dimensions. In the context of transition countries, for instance, it has been argued that low levels of female representation in political institutions can be the result of women’s large participation to the labor market while division of roles in the household remained traditional. In the words of anthropologist Suzanne LaFont, “Women have been and continue to be overworked, and their lives have been over-politicized, the combination of which has led to apathy and/or the unwillingness to enter the male dominated sphere of politics. Many post-communist women view participation in politics as just one more burden.”[11] In such a context, average values of an index on gender equality might mask high achievements in economic empowerment coexisting with lack of political representation.
  • Identifying policies to address gender inequality in transition countries might be especially difficult because, depending on the dimension that one focuses on, the challenge at hand is different: in terms of education and employment, the policy goal appears to be maintaining current levels of equality or increasing them from relatively high initial points; the type of policies to do so are likely different than those used in Western European countries in the last 30 years, where the challenge was rather how to increase equality from relatively much lower levels. Conversely, in other dimensions the challenge is how to make major leaps forward, which move transition countries closer to Western European standards: this is the case for sex-ratios, for instance, and reproductive health more in general. The importance of initial levels and trends for policy implications also showcases how crucial it is to acquire more historical knowledge of policies, institutions, and statistics.

Overall, policy discussions and policy-making should go beyond mere descriptions of what indexes and related international comparisons tell us about gender inequality. A better knowledge and understanding of all of the drivers of gender inequality, of their historical evolution, and of their connections both with overall development and among them, is crucial to give sound policy recommendations.

References

  • Beacháin Stefańczak, K.Ó. and Connolly, E.(2015),  ‘Gender and political representation in the de facto states of the Caucasus: women and parliamentary elections in Abkhazia’. Caucasus Survey, 3(3), pp.258-268.
  • Brainerd, E. (2000), ‘Women in Transition: Changes in Gender Wage Differentials in Eastern Europe and the Former Soviet Union’, Industrial and Labor Relations Review, 54 (1), pp. 138-162.
  • Campa, P. and Serafinelli, M. (2018), ’Politico-economic Regimes and Attitudes: Female Workers under State-socialism’, Review of Economics and Statistics, Forthcoming.
  • Dijkstra, A. and L. Hanmer (2000), ‘Measuring socio-economic gender inequality: towards an alternative for UNDP’s Gender-related Development Index’, Feminist Economics, Vol. 6, No. 2, pp. 41-75.
  • Einhorn, B. (1993), Cinderella goes to market: citizenship, gender, and women’s movements in East Central Europe, London: Verso.
  • Klasen, S. and Schuler, D. (2011) Reforming the Gender-Related Development Index and the Gender Empowerment Measure: Implementing Some Specific Proposals. Feminist Economics. (1) 1 – 30
  • LaFont, Suzanne (2001), ‘One step forward, two steps back: women in the post-communist states.’ Communist and post-communist studies 34(2), pp. 203-220.
  • Ostrovska, I. (1994). Women and politics in Latvia. Women’s Studies International Forum 2, 301–303.
  • Pollert, A. (2003), ‘Women, work and equal opportunities in post-Communist transition’, Work, Employment and Society, Volume 17(2), pp. 331-357.
  • Stiglitz, Joseph, Amartya Sen, and Jean-Paul Fitoussi (2009). `The measurement of economic performance and social progress revisited.’ Reflections and overview. Commission on the Measurement of Economic Performance and Social Progress, Paris.
  • Tur-Prats, Anna (2018). Unemployment and Intimate-Partner Violence:  Gender-Identity Approach. GSE Working Paper No. 1564
  • Unicef. Women in transition. 1999.
  • UN. The World’s Women 2015.
  • Wolchik, S. L. and Meyer, A.G. (1985), Women, State and Party in Eastern Europe, Durham, NC: Duke University Press.

Footnotes

  • [1] In contrast to a common perception, economists are generally well-aware of the limitations of GDP as a measure of welfare. In fact, the reference manual of national accounts, the SNA 2008, makes this explicit in stating that there is “no claim that GDP should be taken as a measure of welfare and indeed there are several conventions in the SNA that argue against the welfare interpretation of the accounts”.
  • [2] By “transition countries,” we refer to all countries that were part of the Soviet Union plus the Central and Eastern European countries that were heavily influenced by the Soviet Union before 1990 (not including Albania and former Yugoslavia). Starting from this, we – as will be made clear below – sometimes limit the set of countries further depending on data availability.
  • [3] http://hdr.undp.org/en/data
  • [4] https://data.worldbank.org/indicator/SG.GEN.PARL.ZS
  • [5] http://archive.ipu.org/parline-e/reports/2255_arc.ht
  • [6] For Western Europe these countries are: Austria, Belgium, Cyprus, Denmark, Finland, France, Greece, Iceland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Spain, Sweden, and Switzerland. The transition countries are: Armenia, Bulgaria, Georgia, Hungary, Poland, Romania, Russian Federation.
  • [7] The outlier among Western countries is Malta.
  • [8] While explaining the sources of gender violence in the region is beyond the scope of this report, incidentally we notice that, according to recent research, female economic empowerment in a context where patriarchal values are dominant might backfire against women in the form of increased gender violence. See Tur-Prats, 2018.
  • [9] http://reports.weforum.org/global-gender-gap-report-2017/dataexplorer/#economy=MDA
  • [10] UNFPA (2015). Combatting Violence against Women and Girls in Eastern Europe and Central Asia. https://eeca.unfpa.org/en/publications/combatting-violence-against-women-and-girls-eastern-europe-and-central-asia
  • [11] LaFont, Suzanne (2001). One Step Forward, Two Steps Back: Women in the Post-Communist States. Communist and Post-Communist Studies, Vol. 34, pp 208.

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.