Tag: United States

Would Electing More Women Make the U.S. Congress Less Polarized?

20240512 Would Electing More Women Image 03

With growing ideological polarization in the electorate and among U.S. Congress members, the view that electing more women would help solve partisan gridlocks has also grown especially popular. In this policy brief we review recent evidence on gender differences in cooperative behavior among legislators and argue that the prediction that a more female U.S. Congress would be less polarized does not find strong support in the data. While, in the past, Republican women have cooperated more with Democrats than their male colleagues we find evidence that this was due to higher ideological proximity between Republican women and Democrats rather than gender per se. Among Democrats, women actually appear to cooperate less with the opposite party than their male colleagues. Moreover, in recent years gender differences in ideology among Republicans have been narrowing, which also reduce gender differences in cooperation with the opposite party.

Gender Differences in Cooperative Behavior

Observers of U.S. politics have repeatedly reported increasing polarization in the U.S. electorate and Congress over the last decade, with growing concerns that the partisan gridlocks that have impaired Congress’ activities in the last two years will only grow after the 2024 elections. At the same time, it is widely believed that electing more women to the U.S. Congress would help reduce partisanship among legislators and promote cooperation across party lines. For instance, a report by the Center for American Women and Politics found that “collaboration by women across party lines is often fostered by participation in bipartisan, single-sex activities […] which can lead to policy collaboration” (Dittmar et al. 2017). These beliefs are rooted not only in anecdotal evidence but also in academic studies that, through laboratory experiments, have shown that women tend to cooperate more than men (cooperation is considered as working in a team to achieve a common good). However, this finding is not universal across settings and studies (Balliet et al. 2011), which suggests some caution in foreseeing fewer partisan gridlocks when more women are elected. Moreover, while laboratory experiments are a very important tool to discover patterns of human behavior in “ideal” conditions, testing for the robustness of experimental findings in real-world settings is a necessary step to draw definite implications for society-level outcomes.

What then is the research-based evidence on women’s willingness to cooperate with opposite parties as legislators?

Do Women in the U.S. Congress Cooperate More With the Opposite Party Than Men?

The proportion of women in Congress continues to be low, currently standing at 29 percent of the House of Representatives and 25 percent of the Senate. However, women’s representation has massively increased over time, especially since the 101st Congress, which was elected in 1989 (see Figure 1). This change has prompted researchers to investigate the effects of women’s different approaches to competitive and cooperative situations on the day-to-day working of Congress.

In examining the dynamics of legislative cooperation, contrasting viewpoints shed light on the role of gender in policymaking. Volden et al. (2013) find that women’s increased cooperativeness especially helps female lawmakers from minority parties who are able to sustain their bills throughout the legislative process, while more obstructive Congress members fail to find consensus. Offering an alternative explanation, Anzia and Berry (2011) show that female lawmakers indeed sponsor and co-sponsor more bills than male lawmakers but argue that this is due to only the best and most ambitious women entering Congress due to discrimination.

Figure 1. Women in Congress over time.

Source: Bagues et al. (2023), data from the Congressional Research Service.

This early work highlights the importance of studying gender differences in Congress overall and by party, while comparing women and men who have similar characteristics and are elected in comparable districts.

In a recent study, Gagliarducci and Paserman (2022) adopt several empirical strategies to assess the extent to which largely comparable women and men in Congress behave differently in terms of cooperativeness. Their measure of cooperation is the number of co-sponsors that women and men respectively attract on their bills, and what share of these co-sponsors that are from the opposite party. Each bill presented to the U.S. Congress has a main sponsor and can have an unlimited number of co-sponsors. These co-sponsors attract support for the bill and aid its passage through the necessary legislative steps. Gagliarducci and Paserman (2022) consider bills proposed to the U.S. Congress between 1988 and 2010 and find that among Democrats there is no significant gender gap in the number of co-sponsors recruited, but women-sponsored bills tend to have fewer co-sponsors from the opposite party. On the other hand, they establish robust evidence that Republican women recruit more co-sponsors and attract more bipartisan support on their bills than Republican men. They conclude that this pattern indicates that cooperation is mostly driven by a commonality of interest, rather than gender per se. This since during this period female Republican representatives were ideologically closer to Democrats than their male colleagues, whereas Democratic women were ideologically further away from Republicans. They proxy representatives’ ideology using information on the ideological leaning of voters in representatives’ constituency in the presidential elections. As the authors observe, these findings challenge the commonly held view that an increase in female representation in the US Congress would help solve partisan gridlock.

In a recent working paper (Bagues et al. 2023), we assess the replicability and reproducibility of these findings, given their practical relevance in the face of the upcoming 2024 Congress elections. Our work is part of a large effort promoted by the Institute for Replication to improve the credibility of social science by systematically reproducing and replicating research findings published in leading academic journals.

Using the same data and empirical strategies as in Gagliarducci and Paserman (2022), except for correcting for some data collection errors and proposing different assumptions on the empirical specifications, we virtually confirm all their original findings. Most importantly, we also extend the analysis to cover 2011-2020 to study gender differences in legislative cooperation in a context that differs in at least two relevant aspects. During this period the share of women in the House of Representatives became substantially larger and, moreover, within-party gender differences in ideology changed compared to previous decades. While Democratic female representatives are still less conservative that Democratic men, women became ideologically more similar to their male colleagues among Republicans. We reach this conclusion by proxying representatives’ ideology using information on the ideological leaning of voters in representatives’ constituency in the presidential elections, as in Gagliarducci and Paserman (2022).

Consistent with the hypothesis that gender differences in cooperation across parties are driven mainly by ideological distance, we observe that bills sponsored by female Democrats are less likely to have opposite party co-sponsors than bills sponsored by male Democrats. We also, do not observe any gender differences in bipartisan cooperative behavior among Republicans. Finally, we observe more robust evidence that during the last decade bills from both Republican and Democratic women attracted more sponsors than bills from their male colleagues.

In sum, the novel evidence from the 2011-2020 period strengthens the finding that cooperation with members of the other party is driven mainly by ideological proximity rather than gender per se.

Conclusion

We have reviewed the recent academic literature on gender differences in willingness to cooperate among legislators, considering the largely popular view that a more female U.S. Congress would be less polarized and thus face fewer partisan gridlocks. Such a view is particularly salient at a time of increased polarization in U.S. politics and growing representation of women in the U.S. Congress.

Overall, studies of the extent to which bills promoted by women and men in Congress attract co-sponsors from members of the opposite party invite caution in predicting fewer gridlocks from the election of more women. Women legislators do not appear to be inherently more willing to cooperate with the opposite party. Gender differences in cooperation noticed in the past seem to be mainly driven by Republican women being more likely to legislate with Democrats because of a higher degree of ideological proximity to the opposite party compared to their male colleagues. However, analysis of recent data also show that Republican women have become ideologically more aligned to their male colleague in the last decade. This suggests that as the share of women in Congress increases, their characteristics and ideological standing might also change, making it hard to predict patterns of future behavior based on the past.

References

  • Anzia, Sarah F., and Christopher R. Berry. (2011). The Jackie (and Jill) Robinson effect: Why do congresswomen outperform congressmen? American Journal of Political Science 55, no. 3. pp. 478-493.
  • Bagues, Manuel, Pamela Campa, and Giulian Etingin-Frati. (2022). Gender Differences in Cooperation in the US Congress? An Extension of Gagliarducci and Paserman. No. 75. I4R Discussion Paper Series, 2023.
  • Balliet, Daniel, Norman P. Li, Shane J. Macfarlan, and Mark Van Vugt. (2011). Sex differences in cooperation: a meta-analytic review of social dilemmas. Psychological Bulletin 137, no. 6. p. 881.
  • Dittmar, Kelly, Sanbonmatsu, Kira, Carroll, Susan, Walsh, Debbie, and Wineinger, Catherine. (2017). Representation Matters: Women in the U.S. Congress. Centre for American Women and Politics, Rutgers University.
  • Gagliarducci, Stefano, and M. Daniele Paserman. (2022). Gender differences in cooperative environments? Evidence from the US Congress. The Economic Journal 132, no. 641, pp. 218-257.
  • Volden, Craig, Alan E. Wiseman, and Dana E. Wittmer. (2013). When are women more effective lawmakers than men?. American Journal of Political Science 57, no. 2. pp.326-341.

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Georgian Economy and One Year of Russia’s War in Ukraine: Trends and Risks

20230228 Georgian economy and one year of Russia Image 01

Russia’s invasion of Ukraine profoundly impacted the global economy, immediately sending shockwaves across the globe. The attack of a country that was once a major energy supplier to Europe on the country which was one of the top food exporters in the world, sent food and fuel prices spiralling, causing major energy shortages and the prospect of protracted recession in the United States and the European Union.

The unprovoked and brutal aggression resulted in nearly universal condemnation and widespread sanctions placed on Russia by the United States, the EU, and other Western allies. Financial sanctions were perhaps the most unexpected and significant with the potential for immediate impact on Russia’s neighbours, including those that did not formally join the sanctions regime. In addition to sanctions, the major consequence of the war was mass migration waves, particularly from Ukraine, but also from Russia and Belarus to neighbouring countries.

At the start of the war, it was expected that the Georgian economy would be severely and negatively impacted for the following reasons:

  • First, as a former Soviet republic, Georgia historically maintained close economic trade ties with both Russia and Ukraine. The ties with Russia have weakened considerably in the wake of the 2008 Russo-Georgian war but remained significant. Russia was the primary market for imports of staple foods into Georgia, such as wheat flour, maize, buckwheat, edible oils, etc. Russia and Ukraine were both important export markets for Georgia. Russia was absorbing about 60 percent of Georgian wine exports and 47 percent of mineral water exports, while Ukraine was one of the leading importers of alcohol and spirits from Georgia (46 percent of Georgia’s exports). Tourism and remittances are other areas where Georgia is significantly tied to Russia and somewhat weaker to Ukraine. Before the pandemic, in 2019 Russia accounted for 24 percent of all tourism revenues, while Ukraine for 6 percent. Remittances from Russia accounted for 16.5 percent of total incoming transfers in 2021.
  • Second, while the Georgian government chose to largely keep a neutral stance on the war (announcing at one point that they would not join or impose sanctions against Russia), the main financial and trade international sanctions were still in effect in Georgia due to international obligations and close business ties with the West. These factors were reinforced by strong support for Ukraine among the Georgian population, where the memory of the Russian invasion of Georgia in 2008 remains uppermost.
  • In addition, Georgia is a net energy importer, and while the dependence on energy imports from Russia is not significant, the rising prices would have affected Georgia profoundly.

Original publication: This policy paper was originally published in the ISET Policy Institute Policy Briefs section by Yaroslava Babych, Lead Economist of ISET Policy Institute. To read the full policy paper, please visit the website of ISET-PI. 

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Putting the “I” Back in Team: The Rise of International Teams in Science

20181217 Conference Image 01

In this policy brief, I discuss the increasing prevalence of international teams in the production of scientific knowledge.  I outline several potential factors that may explain these trends and discuss recent evidence from an original survey of coauthors on scientific papers regarding their collaboration behavior.  Finally, as a notable example of increased international collaboration, I discuss the increase in scientific collaboration between Russia and the US after the end of the Cold War.

The Increase in Collaboration and Internationalization of Teams

Teams are becoming more prevalent in science.  Both the share of papers produced by teams and the number of scientists working on scientific papers has increased in recent decades (Wuchty, Jones and Uzzi, 2007).  Economic theory suggests that scientific research is becoming increasingly collaborative since the frontier of scientific knowledge has become more complex and specialized so that more researchers are needed to combine their expertise to make advances (Jones, 2009).  Team members are also becoming more geographically dispersed: the share of papers resulting from international collaborations has increased, and within the US, scientists today are more likely to have coauthors located in a different city than before (Freeman, Ganguli and Murciano-Goroff, 2014).

These trends can be seen clearly in the graph below from the National Science Board’s Science and Engineering Indicators 2012.  It shows the share of both world papers and US papers from 1990-2010 that are coauthored, coauthored with domestic coauthors only, and coauthored with at least one international coauthor.  Collaboration in general and international collaboration have been increasing steadily since 1990 both in the world and in the US.  However, for the US, the share of domestic-only collaborations has plateaued, while it is increasing in the rest of the world.  In a recent Nature article, Adams (2013) shows that this trend similarly holds for other Western countries (United Kingdom, Germany, France, the Netherlands, Switzerland), while for emerging economies (China, India, South Korea, Brazil, Poland), domestic collaborations are also increasing.

Figure 1. World and US Trends in Scientific Collaboration, 1990-2010
fig1
Source: From National Science Board (2012)

Why has Science Become More International?

There are many potential reasons for the recent increases in international collaboration.  An important factor has likely been the spread of the scientific workforce and R&D activities throughout the world (Freeman, 2010). The growing number of science and engineering PhDs in developing countries, some of whom are international students and post-docs returning to their home countries has expanded the supply of potential collaborators around the world (Scellato, Franzoni, and Stephan, 2012).  Another factor is funding that has shifted scientific production towards international teams, as increased government and industry R&D spending in developing countries and grant policies by the European Union and other countries have supported international cooperation.

The lower cost of travel and communication in recent decades has also reduced the cost of collaborating with people in different locations.  For example, Agrawal and Goldfarb (2008) show how the expansion of Bitnet, the precursor to the Internet, led to increased collaboration between institutions within the US.  Finally, the location of scientific equipment and materials, such as the CERN Large Hadron Collider, telescopes, or climatological data available only in certain parts of the world, have increased international collaboration, and in some fields, has made international collaboration a necessity.

Survey Evidence on Scientific Collaborations

In a recent paper, my coauthors and I present the results of an original survey we conducted of scientists regarding collaboration (Freeman, Ganguli and Murciano-Goroff, 2014).  In August 2012 we conducted a web-based survey of the corresponding authors of scientific papers with at least one US coauthor published in 2004, 2007, and 2010 in the fields of Nanotechnology, Biotechnology, and Particle Physics.

We customized each survey to ask the corresponding author about the collaboration and individual team members.  The survey questions asked about how the team formed, how it communicated and interacted during the collaboration, the contribution of each coauthor, types of research funding, and the advantages and disadvantages of working with the team.  We received 3,925 responses, so that our response rate was approximately 20%.

The survey also asked the respondent which country each coauthor was “primarily based in during the research and writing” of the article. This gives us a more accurate measure of whether teams are international than can be typically gleaned from publication data, which are based on author affiliations at the time of publication.  Defining international teams from author affiliations alone can produce errors if affiliations change between the time the research was undertaken and the time of publication, or because some people have affiliations from more than one country.

Our analysis of the survey data uses the respondents’ information to define US collocated, US non-collocated and international teams. One of our key results is that face-to-face meetings continue to play an indispensible role in collaborations: most collaborators first met while working in the same institution.  Teams also reported that while carrying out the research, they communicated often through face-to-face meetings, even with coauthors from distant locations.

Figure 2 below displays how the corresponding author responded about how they first met their team members.  It shows that former colleagues play a very important role in the formation of international teams, followed by former students, conferences and institution visits, which equally contribute.  The graph also shows the similarity between international teams and US non-collocated teams in how coauthors met.  For other survey questions, our analysis also shows similarities between international teams and US non-collocated teams, suggesting that the salient issues are more about geography in general rather than necessarily about national borders.

Figure 2. How Coauthors First Met
fig2
Source: From Freeman, Ganguli and Murciano-Goroff (2014)

 

Another key finding from our survey is that the main reason for most collaborations, whether domestic or international, is to combine the specialized knowledge and skills of coauthors. We also asked the corresponding authors their views of the advantages and challenges of their collaboration.  The most often cited advantage for all types of collaborations was “Complementing our knowledge, expertise and capabilities” and “learning from each other”.  For the challenges, US non-collocated and international teams tended to agree more that there was “Insufficient time for communication”, “Problems coordinating with team members’ schedules”, and “Insufficient time to use a critical instrument, facility or infrastructure”, but international teams did not report these problems more often than US non-collocated teams. Where international teams differed is that these teams were the most likely to agree that their “research reached a wider audience”.

International Collaboration After the End of the USSR

A small but significant part of the increase in international collaboration since the 1990s can be attributed to the end of the Cold War.  In “Russian-American Scientific Collaboration” (Ganguli, 2012), I examine trends in international collaboration by Russian and US scientists since the end of the USSR.  Given the nature of the Cold War and restrictions on travel and communication with the West, I show that there was a dramatic increase in the number of publications with at least one Russian and a US coauthor from 1985 to 2005.

In addition to the lifting of travel and communication restrictions, there are several factors that contributed to the surge in collaborations between American and Russian scientists after the end of the USSR.  First, at the level of the Russian government, there was a switch to a more open and collaborative approach to science. Part of this effort included establishing international centers for research in Russia aimed at integrating Russia into the global science community. Another important factor facilitating collaborations with Western researchers were foreign grant programs. The large increase in the emigration of Russian scientists in the 1990s to the West also contributed to international collaboration.  After emigrating, many Russian scientists maintained close links to their colleagues in Russia, and coauthored papers with their former colleagues, which are counted as internationally coauthored publications.

While many of these factors have aided international cooperation after the end of the USSR, there have also been significant challenges that made cooperation difficult.  Some of these challenges in the early 1990s included the political instability, organizational turnover making long-term funding agreements difficult to implement, difficulty transferring funds due to the underdeveloped banking system, high taxation and customs duties, lack of effective intellectual property rights, poor infrastructure, lack of a shared language (both linguistic and cultural), and external regulations (see further discussion in OECD, 1994).  However, many of these challenges have now been overcome, leading to the continued increase in international collaboration between Russian and US scientists.

My analysis in Ganguli (2012) shows that the increase in Russian-American collaboration was more pronounced in some fields of science versus others, particularly in Physics.  Figure 3 shows that the bulk of the articles published with Russian and American coauthors were Physics articles, with a sharp increase occurring immediately after 1991.

Figure 3. Russia-United States Publications By Field, 1985-2005
fig3
Source: From Ganguli (2012)

 

While some of the differences across the fields can be attributed to the number of scientists active in these fields, there are also other potential contributing factors.  For example, it may be that there was greater emigration of scientists from certain fields abroad, and links between emigrants and those who remained in Russia persisted. Graham and Dezhina (2008: 24) suggest that over 50 percent of emigrants were physicists and mathematicians. Another reason may be that international collaboration was more important in some fields due to the knowledge or resources needed to conduct research during the economic crisis of the 1990s.  As Wagner Brahmakulam, Peterson, Staheli, and Wong (2002) point out, physics research received significant amounts of US government funding for international collaboration, partly because expensive equipment that is needed and through collaboration, countries could share costs.  Also, physicists from many countries often meet and work together at international research centers like CERN.  Moreover, in some fields, the US and Russian governments shared priorities in funding international cooperation, like biomedical and health sciences, energy, physics, while there were gaps in some areas where Russia devoted resources and the US did not, like chemistry (Wagner et al. 2002: 24).  Graham and Dezhina (2008: 141) also discuss how Western colleagues benefited from working with Russians especially in fields like zoology, botany and the earth sciences, since the Russian colleagues provided access to data from unique regions not available previously.

Support for International Teams?

This policy brief has discussed some reasons for the increase in international scientific collaboration and related empirical evidence, including insights from collaboration after the end of the USSR.  The growth in collaboration and the geographic dispersion of teams is likely to continue; the frontier of scientific knowledge will become more complex and specialized, so that an even greater numbers of researchers will be needed to combine their expertise, and they are likely to be spread across increasingly distant locations.

These trends raise many complex issues for policymakers.  For some countries, international collaboration may be the only way to sustain the science sector as the frontier of knowledge becomes more complex and resource-intensive.  For some, international collaborations may increase the emigration of home-grown talent to wealthier countries.  To what extent international collaboration should be supported, and how, will be important policy questions going forward. Typically, funding for international projects has been the main policy lever, and the Russian experience suggests that grant programs did play a critical role in that case.  As our survey evidence in Freeman, Ganguli and Murciano-Goroff (2014) suggests, face-to-face meetings are especially important in forming and sustaining international collaborations.  Thus, funding mechanisms that include provisions for research stays and face-to-face meetings may be the most effective means for fostering international collaborations.

References

  • Adams, J. (2013). “Collaborations: The Fourth Age of Research.” Nature, 497(7451), 557-560.
  • Agrawal A, Goldfarb A (2008). “Restructuring Research: Communication Costs and the
  • Democratization of University Innovation,” American Economic Review, 98(4):1578-1590.
  • Freeman, Richard B. (2010). “Globalization of Scientific And Engineering Talent: International Mobility of Students, Workers, and Ideas and The World Economy.” Economics Of Innovation And New Technology, Volume 19, issue 5, 201 pp. 393-406.
  • Freeman, Richard B., Ina Ganguli and Raviv Murciano-Goroff (2014).  “Why and Wherefore of Increased Scientific Collaboration,” NBER Working Paper No. 19819, Issued in January 2014.
  • Ganguli, Ina (2012).  “Russian-American Scientific Collaboration” in Y.P. Tretyakov (ed), Russian-Аmerican Links: Leaps Forward and Backward in Academic Cooperation. St. Petersburg, Russia: Nestor-Historia, pp. 120-135.
  • Graham, Loren and Irina Dezhina (2008).  Science in the New Russia: Crisis, Aid, Reform. Bloomington and Indianapolis: Indiana University Press, 2008.
  • Jones, Ben (2009). “The Burden of Knowledge and the ‘Death of the Renaissance Man’: Is
  • Innovation Getting Harder?” Review of Economic Studies, 76:283-317.
  • National Science Board (2012). Science and Engineering Indicators 2012. Arlington VA: National Science Foundation (NSB 12-01).
  • National Science Board (2006). Science and Engineering Indicators 2006. Arlington VA: National Science Foundation (NSB 06-01).
  • OECD (1994).  Science, Technology, and Innovation Policies. Federation of Russia. Paris: Organisation for Economic Co-operation and Development, 1994.
  • Scellato, G., Franzoni, C., & Stephan, P. (2012). “Mobile Scientists and International Networks,” NBER Working Paper 18613.
  • Wagner, Caroline, Irene Brahmakulam, D.J. Peterson, Linda Staheli, and Anny
  • Wong (2002).  U.S. Government Funding for Science and Technology Cooperation with Russia.
  • Santa Monica, CA: RAND Corporation, 2002.
  • Wuchty, S., Jones, B. F., & Uzzi, B. (2007). “The Increasing Dominance Of Teams In Production Of Knowledge.” Science, 316(5827), 1036-1039.