Tag: energy
Energy Demand Management: Insights from Behavioral Economics
It has long been recognized that consumers fail to choose the cheapest and most efficient energy-consuming investments due to a range of market and non-market failures. This has become known as the ‘Energy Efficiency Gap’. However, there is currently a growing interest in terms of understanding on how consumers make decisions that involve an energy consumption component, and whether the efficiency of their decisions can be improved by changing the market incentives and governmental regulation. Meeting this interest, the most recent SITE Energy Talk was devoted to Demand Side Management. SITE invited Eleanor Denny, Associate Professor of Economics at Trinity College Dublin, and Natalya Volchkova, Assistant Professor at the New Economic School (NES) in Moscwo and Policy Director at the Center for Economic and Financial Research (CEFIR) to discuss the Demand Side Management process. The aim of this brief is to present the principles of Demand Side Management and discuss a few implemented programs in Europe, based on the discussions during this SITE Energy Talk.
For the last two decades, climate change policies have mostly been focused on the energy supply side, constantly encouraging new investments in renewables. But reducing energy demand may be as effective. Indeed, Denny and O’Malley (2010) found that investing 100MW in wind power is equivalent, in terms of emissions, to a decrease in demand of 50MW. Hence, there is a clear benefit of promoting energy saving. This has been the central point of different Demand Side Management (DSM) programs that may diversely focus on building management systems, demand response programs, dynamic pricing, energy storage systems, interruptible load programs and temporary use of renewable energy. The goal of these programs is to lower energy demand or, at least, smoothen the electricity demand over the day (i.e. remove peak-hour segments of demand to off-peak hours) as illustrated in Figure 1.
Figure 1 – Smoothing electricity demand during the day
A behavioral framework
DSM encompasses initiatives, technologies and installations that encourage energy users to optimize their consumption. However, the task does not seem easy, given the well-documented energy efficiency gap problem (e.g. Allcott & Greenstone, 2012 or Frederiks et al., 2015): consumers do not always choose the most energy efficient investments, despite potential monetary saving. One reason why might be that energy savings per se are not enough to trigger investment in energy efficient solutions or products. As Denny mentioned in her presentation, consumers will invest when the total private benefits are higher than the costs of investment. This trade-off can be summarized by the following equation:
This equation illustrates that any DSM design should take into account both non-monetary benefits and consumers’ time preferences. The non-monetary benefits, such as improved comfort, construction and installation time, but also warm glow (i.e. positive feeling of doing something good) or social comparison, may play a major role. Moreover, the consumers’ time preferences (reflected here by the discount rate ) are also crucial in the adoption of energy efficient products. In particular, if consumers have present biased preferences, they would rather choose a product with a lower cost today and greater future cost than the reverse (i.e. higher cost today with lower future cost). Since energy-efficient products often require higher upfront investment, consumers that are impatient for immediate gains, may never choose energy efficient products.
Ultimately, it is an empirical (and context specific) question when and why DSM programs can reduce the energy efficiency gap. We describe below some DSM programs that have been implemented and discuss their impact.
Smart meters, a powerful DSM tool
A common DSM program is the installation of smart meters, which measure consumption and can automatically regulate it. The adoption of smart meters allows real-time consumption measures, unlike traditional meters that only permitted load profiling (i.e. periodic information of the customer’s electricity use).
Figure 2 – Energy Intensity in Europe
As illustrated in Figure 2, many European countries have implemented smart meter deployment programs. Interestingly, most of those countries have a relatively high level of energy efficiency (proxied by the energy intensity indicator of final energy consumption). On the contrary, in the Balkans and non-EU Eastern Europe countries, which fare poorly on the energy intensity performance scale, no smart meter rollout programs seem to be implemented.
Following the European Commission (EC) directive of 2009 (Directive 2009/72/EC), twenty-two EU members will have smart meter deployment programs for electricity and gas by 2020 (see Figure 2). These programs are targeting end-users of energy, e.g. households that represent 29% of the current EU-28’s energy consumption, industries (36.9%) and services (29.8%) (EEA). With this rollout plan, a reduction of 9% in households’ annual energy consumption is expected.
The situation across the member states is however very different. Spain was one of the first EU countries to implement meters in 1988 for industries with demand over 5MW. All the meters will be changed at the end of 2018. 27 million euros for a 30-year investment in smart meter installations is forecasted (EC, 2013). Sweden started to implement smart meter rollout in 2003 and 5.2 million monthly-reading meters were installed by 2009. Vattenfall, one of the major utilities in Sweden, assessed their savings up to 12 euros per installed smart meter (Söderbom, 2012). Similarly in the United Kingdom, the Smart Metering Implementation Programme (SMIP) is estimated to bring an overall £7.2 billion (8.2 billion euros) net benefit over 20 years, mainly from energy saving (OFGEM, 2010). In general, smart metering has been effective, but its effectiveness may diminish over time (Carroll et al, 2014).
From smart-meter to real-time pricing
The idea of real-time pricing for electricity consumers is not new. Borenstein and Holland (2005) and Joskow and Tirole (2006) argue that this price scheme would lead to a more efficient allocation, with lower deadweight loss than under invariant pricing.
By providing detailed information about real-time consumption, smart meters enable energy producers to adopt dynamic pricing strategies. The increasing adoption of smart meters across Europe will likely increase the share of real-time-pricing consumers, as well as the efficiency gains. With the digitalization of the economy, it is likely that smart metering will grow. Indeed, Erdinc (2014) calculates that the economic impact of smart homes on in-home appliances could result in a 33% energy-bill reduction, due to differences in shift potential of appliances.
In 2004, the UK adopted a time-of-use programme called Economy 10, which provides lower tariffs during 10 hours of off-peak periods – split between night, afternoon and evening – for electrically charged and thermal storage heaters. The smart time-of-use tariffs involving daily variation in prices were only introduced in 2017.
Likewise, France’s main electricity provider EDF, implemented Tempo tariff for 350,000 residential customers and more than 100,000 small business customers. Based on a colour system to indicate whether or not the hour is a peak period, customers can automatically or manually monitor their consumption by controlling connection and disconnection of separate water and space-heating circuits. With this program, users reduced their electricity bills by 10% on average.
In Russia, the “consumptions threshold” program discussed by Natalya Volchkova, gave different prices for different consumption thresholds. But it seems that the consumers’ behaviour did not change. This might be due to the thresholds being too low, and an adjusted program should be launched in 2019.
Joskow and Tirole (2007), argue that an optimal electricity demand response program should include some rationing of price-insensitive consumers. Indeed, voluntary interruptible load programs have been launched, mainly targeting energy intensive industries that are consuming energy on a 24/7 basis. These programs consist of rewarding users financially to voluntarily be on standby. For instance, interruptible programmes in Italy apply a lump-sum compensation of 150,000 euros/MWh/year for 10 interruptions and 3000 euros/MW for each additional interruption (Torriti et al., 2010).
Nudging with energy labelling
Energy labelling has been also part of DSM. Since the EC Directives on Ecodesign and Energy Labelling (Directives 2009/125/EC and 2010/30/EU), energy-consuming products should be labelled according to their level of energy efficiency. For Ireland, Eleanor Denny has tested how labelling electrical in-home appliances may affect consumers’ decisions, like purchasing electrical appliances or buying a house. First, Denny and co-authors have nudged buyers of appliances, providing different information regarding future energy bills saving. They find that highly educated people, middle income and landlords are more likely to be concerned with energy-efficiency rates, rather than high-income people.
In another randomized control trial, Denny and co-authors manipulate information on the energy efficiency label for a housing purchase. In Ireland, landlords are charged for energy bills even when they rent out their property. The preliminary findings are that landlords informed about the annual energy cost of their houses are willing to pay 2,608 euros for a one step improvement in the letter rating – the EU label rating for buildings ranges from A to G – compared to the landlords that do not receive the information (see CONSEED project).
Similar to the European Directive, the 2009 Russian Energy efficiency law includes compulsory energy efficiency labels for some goods and improvements of the building standards (EBRD, 2011). Volchkova and co-authors run a randomized controlled experiment on the monetary incentives to buy energy efficient products. In 2016, people in the Moscow region received a voucher with randomly assigned discounts (-30%, -50% or -70%- for the purchase of LED bulbs. Vouchers were used very little, irrespective of the income. It seems that consumption habits and not so much monetary rewards were the main driver of LED bulb purchase.
How can DSM be improved?
Any demand response program requires some demand elasticity. For example, smart meters and dynamic pricing only improve electricity consumption efficiency if demand is price elastic. As Jessoe and Rapson (2014) show, one should provide detailed information (e.g. insights on non-price attributes, real-time feedback on in-home displays) to try to increase demand elasticity. Hence it seems that the low adoption of energy efficient goods is partly due to a lack of information or biased information received by the consumers. First, it is difficult for many to translate energy savings in kWh in monetary terms. Second, many consumers focus on the short-term purchase cost and discount heavily the long run energy saving. These information inefficiencies can, in principle, be diminished by private actors and/or governmental regulation. Denny mentioned the possibility of displaying monetary benefits on labels in consumers’ decision-making in order to improve energy cost salience. For instance, in the US or Japan, the usage cost information is also displayed in monetary terms. Moreover, lifetime usage cost (i.e. cost of ownership) should also be given to the customers since it has been shown that displaying lifetime energy consumption information has significantly higher effect than presenting annual information (Hutton & Wilkie 1980; Kaenzig 2010).
Summing up, DSM programs, including those with a behavioral framework, are an important tool for regulators, households and industries helping to meet emissions reduction targets, significantly decrease demand for energy and use energy more efficiently.
References
- Allcott, Hunt ; Greenstone, Michael. 2012. “Is There an Energy Efficiency Gap?”, Journal of Economic Perspectives, 26 (1): 3-28.
- Borenstein, Severin; Holland, Stephen. 2005. “On The Efficiency Of Competitive Electricity Markets With Time-Invariant Retail Prices”, Rand Journal of Economics, 36(3), 469-493.
- Carroll, James; Lyons, Seán; Denny, Eleanor. 2014. “Reducing household electricity demand through smart metering: The role of improved information about energy saving,” Energy Economics, 45(C), 234-243.
- Denny, Eleanor; O’Malley, Mark. 2010. “Base-load cycling on a system with significant wind penetration”, IEEE Transactions on Power Systems 2.25, 1088-1097.
- Erdinc, Ozan. 2014. “Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households”, Applied Energy, 126(C), 142-150.
- European Bank for Reconstruction and Development. “The low carbon transition”. Chapter 3 Effective policies to induce mitigation (2011).
- European Commission. Electricity Directive 2009/92. Annex I.
- European Commission. Ecodesign and Energy Labelling Framework directives 2009/125/EC and 2010/30/EU.
- European Commission. “From Smart Meters to Smart Consumers”, Promoting best practices in innovative smart metering services to the European regions (2013).
- European Commission. “Benchmarking smart metering deployment in the EU-27 with a focus on electricity” (2014).
- European Environment Agency. Data on Final energy consumption of electricity by sector and Energy intensity.
- Frederiks, Elisha R.; Stenner, Karen; Hobman, Elizabeth V. 2015. “Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour”, Renewable and Sustainable Energy Reviews, 41(C), 1385-1394.
- Hutton, Bruce R.; Wilkie, William L. 1980. “Life Cycle Cost: A New Form of Consumer Information.” Journal of Consumer Research, 6(4), 349-60.
- Jessoe, Katrina; Rapson, David. 2014. “Knowledge is (less) power: experimental evidence from residential energy use”, American Economic Review, 104(4), 1417-1438.
- Joskow, Paul; Tirole, Jean. 2006. “Retail Electricity Competition“, Rand Journal of Economics, 37(4), 799-815.
- Joskow, Paul; Tirole, Jean. 2007. “Reliability and Competitive Electricity Markets”, Rand Journal of Economics, 38(1), 60-84.
- Kaenzig, Josef; Wüstenhagen, Rolf. 2010. “The Effect of Life Cycle Cost Information on Consumer Investment Decisions Regarding Eco‐Innovation”, Journal of Industrial Ecology, 14(1), 121-136.
- OFGEM. “Smart Metering Implementation Programme” (2010).
- Söderbom, J. “Smart Meter roll out experiences”, Vattenfall (2012).
- Torriti, Jacopo; Hassan, Mohamed G.; Leach, Matthew. 2010. “Demand response experience in Europe: Policies, programmes and implementation”, Energy, 35(4), 1575-1583.
Project links
Eleanor Denny and co-authors’ European research projects:
- CONSEED (Consumer Energy Efficiency Decision making) https://www.conseedproject.eu/
- NEEPD (Nudging Energy efficient Purchasing Decisions) https://www.neepd.com/
Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.
Green Transition: Adapting Markets and Policies
This policy brief summarizes the discussion at the 8th annual SITE Energy Day conference, devoted to market adaptations and policies necessary to address the green transition. Recent energy trends with ever more green energy-mixes will have consequences for the functioning of related markets as well as implications for appropriate policy responses. New financial solutions, technological developments, international cooperation, and national policy initiatives in both developing and developed countries are examples of adaptations to this transition process. To discuss these issues, the conference brought together a group of distinguished experts from the energy industry, policy community and academia.
In December 2014, world leaders have gathered in Peru (Lima) for the 20th annual meeting of the United Nations Framework Convention on Climate Change. This convention has as an objective to “stabilize greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system” (see UNFCCC’s webpage). Even though the agreement to reduce emissions to a sustainable level may take years to be negotiated, at least 195 countries have ratified the UFCCC convention. The willingness to reduce environmentally harmful emissions has led to many countries changing their energy profile to include more green energy, a process that is often referred to as “green transition”.
It may be worth mentioning that the label “green transition” consists of two conceptual components. “Green” refers to the ability to generate environmentally friendly energy, which has become a key challenge for our society. Indeed, a majority of people now recognize the pressing need to cut pollution in the face of climate change and environmental degradation. The wording “transition” acknowledges that a shift toward a greener energy mix seems unavoidable, but this shift may not occur immediately or uniformly around the globe. The required time for change is long and the shift itself may not be smooth. To put it differently, the green transition has had and will continue to have wide-ranging consequences for businesses, governments, and the international community.
As a result, there is a need to carefully address the potential implications for the existing energy and related markets and market players, and for government policies, as well as new markets and new policies triggered by the green transition. These topics were the focus of the 8th SITE Energy Day, a half-day conference held at the Stockholm School of Economics on December 2, 2014.
Green Transition and the Energy Markets
The first panel focused on how energy markets have responded to green transition and how they may react in the future. Speakers from electricity companies, regulatory bodies and think tanks discussed how the green transition may affect the use of traditional financial instruments by energy companies; the choice of economically viable technology for producing green energy; and the way markets could be integrated to increase the efficiency of green energy.
As green transition almost always introduces more intermittent production, it is likely that market uncertainty will increase. This is one of the reasons why traditional financial instruments may not be fully adequate. The first speaker Laurent Cheval, Head of Nordic and Fuel Origination in the business division Asset Optimization & Trading at Vattenfall discussed this issue extensively. Energy companies face substantial financial risks since both prices and quantities may be highly volatile. To mitigate these risks, market participants may use an array of financial products. In mature energy markets, the products are fairly standardized. However, more complex and tailor-made financial products are required to face the ongoing changes in the sector. For example, the increased share of renewable energy combined with more interconnected markets create specific market risks. To hedge against risks associated with weather changes, future fuel costs, interest rates and so on, more and more energy providers trade customized derivatives “over-the-counter” (OTC) rather than through a centrally-cleared exchange. Another example is the development of decentralized power production and the rise of the “Prosumer” who simultaneously produces and consumes power. So far, the relevant regulation is underdeveloped and there is an additional demand for innovative financial solutions. Large energy companies such as Vattenfall are for instance offering a range of financial hedging solutions combined with actual physical handling and delivery of energy products.
Green transition should in the long run lead to a domination of environment friendly energy. However it is important that only economically viable technologies subsist. It is therefore necessary to assess the cost of producing green energy. Lars Andersson, Head of Wind Power Unit at the Swedish Energy Agency, reported on an extensive study done by the Agency on this issue. Over the last five years, the production cost of wind power has fallen consistently and capacity usage has increased. This dramatic change in the wind power industry likely implies that the existing subsidies for building wind power plants gradually will be phased out. It is unclear how the industry will react to these cuts in subsidies. Furthermore, according to Andersson, wind production faces at least two challenges. Without developing the capabilities for energy storage, electricity markets will face more energy imbalances as the share of wind power increases. Additionally, the support from the local communities is needed to ensure an expansion of wind power. Addressing these issues requires the development of new regulation and defining a common goal which may promote cooperation between stakeholders.
Ultimately the green transition will end when and if the green energies are largely adopted around the globe. One way to accelerate this green transition may be to coordinate action and development of governmental policies. Martin Ådahl, Chefsekonom at Centerpartiet, and Daniel Engström, Programchef Miljö och Klimat at Fores, presented the current state of the international climate policy and discussed the benefits of linking carbon emission rights markets. Because of conflicting interests, the likelihood of reaching an agreement within the current United Nations climate negotiations is rather small.
However, Ådahl and Engström suggested that the focus should instead be on reaching agreements between big polluter countries that contribute the lion’s share of global emissions. Indeed, regional emission trading schemes already exist in the EU, the US and China, the three regions which together account for over 50 percent of global emissions. One potential shortcoming of this suggestion is that it may not be enough to stabilize greenhouse gas concentrations in the atmosphere. Thereby, Ådahl and Engström discussed the possibility to link current cap-and-trade markets, as a first step toward an international system with a more formal global agreement. Linking cap-and-trade markets has many benefits, especially in the form of efficiency gains. However, emission caps vary across countries and regions because of different political goals or priorities. When markets are linked, difference in abatement costs (or allowance prices) would lead to a flow of allowances and emissions from countries/regions with low abatement cost to countries with higher ones. Thereby prices would be equalized, benefiting entities with cheaper allowances. To avoid opportunistic behavior, countries would first have to agree ex ante on an exchange rate between different countries’ emission rights. Second, a clear regulatory framework is required. Both Ådahl and Engström emphasized the need of an international organization devoted to climate economics. Such an institutional body could not only regulate the links between cap-and-trade markets, but also provide concrete solutions and technical models to improve on the market design.
Environmental Policies: International Experience
The second panel focused on how governments may promote green transition. Anna Pegels, Senior Researcher at the German Development Institute (DIE), reviewed green policy initiatives in developing countries. Pegels argued based on evidence from e.g. India and South Africa that it is possible to combine substantial growth with green energy. This is good news since emerging countries are among the highest polluters. However, to change a country’s energy profile, governments need to intervene and develop new industrial policies.
Governments can set long-term goals, which are supported by short- and mid-term targets. However, given the large profits that are at stake, officials may likely be subject to the risk of capture and corruption. To limit such risks, Pegel emphasized the need to introduce competition in the energy sector as a whole. Subsidized feed-in tariffs for renewable energy for example should be only a first step, to reach a certain scale of production. But the technology is mature enough that producers should be able to bear some additional risk in their current activity. This should increase the scope for competition. Finally, it is essential that governments continuously engage in policy revision cycles and learn from other countries’ experiences.
Benjamin Sovacool, Professor of Business and Social Sciences at Aarhus University and Director of the Danish Centre for Energy Technologies, talked about the process of low carbon transition in the Nordic region. In spite of large investments into renewable energy, fossil fuels still dominate the consumption in the Nordic countries and considerable measures need to be taken in the decades ahead to make the transition to a greener energy mix. Sovacool highlighted four areas which could help reduce the carbon footprint of the Nordic countries: renewable energy, increased energy efficiency of buildings, transportation, and carbon capture and storage (CCS). In order to be successful, the green transition has to bring about a systemic change engaging actors across the economy, particularly including end-users. There should also be a focus on additional technological progress. Finally, Sovacool noted that a rapid emission reduction such as the one planned in the Nordic countries is unlikely to be followed on a global scale in the near future due to a lack of political feasibility.
Conclusion
The green transition is expected to have a profound impact on the functioning and structure of energy markets as well as the policies that facilitates this transition.
There is an ongoing process of decentralization in the energy sector, with the rise of “prosumer” market places that alter market dynamics. Moreover, market uncertainty is increasing due to more intermittent production (due to renewables) and a stronger interconnectedness between energy markets. It is likely that energy imbalances will be a major concern and that more and more energy trade will take place on real time markets (as opposed to e.g. on the day-ahead market). As markets’ linking becomes stronger, the interdependence between markets in terms of energy type and geographical location will be intensified. The need for coordination and international cooperation will be even more pressing. The uncertainty regarding the development of international cooperation, but also regarding national policy changes, may however disrupt energy markets. Measures such as withdrawing existing subsidies must be handled in a gradual and strategic manner so as not to discourage investment. A key issue for governments is to have a credible green policy in the long-term. Such credibility will also depend on the level of involvement of different actors in the green transition, including the necessity to have a multilevel engagement of the end-users.
References
- Energimyndigheten, (2014), Produktionskostnads-bedömning för Vindkraft i Sverige, ER 2014:16
- Pegels, A. (Ed.). (2014), Green industrial policy in emerging countries, Vol. 34, Routledge
- Rutqvist, J., Engström, A.and Ådahl, M., A Bretton Woods for the Climate. Fores, 2010
- SITE 8th Energy Day, http://www.hhs.se/en/about-us/calendar/site-external-events/2014/site-energy-day/
- UNFCCC, (n.d). First steps to a safer future: Introducing The United Nations Framework Convention on Climate Change, http://unfccc.int/essential_background/convention/items/6036.php [8 December 2014]


