Tag: Gender quotas
Gender Board Diversity Across Europe Throughout Four Decades
Despite comprising a large share of the workforce, women remain a minority in corporate boardrooms across Europe. While progress has been made in recent decades among public (listed) firms, diversity lags behind in private corporations. This policy brief showcases evidence from the Gender Board Diversity Dataset (GBDD) – a newly released, unique data source which covers a comprehensive sample of European private and public corporations over multiple decades. Uniquely, the GBDD, encompasses private (non-listed) companies, a novel method for identifying the gender of board members based on linguistic and cultural heuristics, and a cross-country harmonization of firm-level data. These features make the GBDD a great tool for answering policy-related questions and enable cross-country and cross-sector comparisons. As such, the GBDD can help ensure that policies aimed at promoting gender board diversity are scientifically well grounded.
Background
The labor force participation rate of women in Europe has been rising over the last few decades and is approaching the participation rate of men. However, the proportion of company board positions held by women is still significantly lower. This issue has generated heated debate among academics (e.g. see Nguyen et al., 2020, for a recent literature review) as well as among the general public. It has also prompted several countries to mandate gender quotas for some companies (typically public companies or the largest limited liability companies). For example, in Norway, large and medium-size firms are mandated to guarantee that both women and men account for at least 40 percent of board members. Given the increasing proliferation of mandated gender board quotas across countries, it is imperative that the public be aware of the main facts concerning gender board diversity in a broad set of companies i.e. those that make up the largest proportion of the economy, offer the majority of jobs, and often remain outside the scope of quota legislation.
The Gender Board Diversity Dataset
The Gender Board Diversity Dataset (GBDD), created by Drazkowski, Tyrowicz, and Zalas (2024), provides a novel cross-country perspective on women in management and supervisory boards over the past four decades. The GBDD is based on firm-level registry data from Orbis, which the authors have harmonized to ensure comparability across countries. A key feature of the GBDD is that it covers registry information from both public and private (non-listed) companies. This makes it a comprehensive source of information as the majority of board positions, as well as the majority of jobs in general, are in private rather than public companies. Data on private companies are scarce, and the GBDD is one of very few data sources containing this information across Europe. The GBDD is based on a sample of over 28 million unique firms from 43 European countries observed, on average, for around seven years. It contains information about nearly 59 million individuals who sit on management and supervisory boards and covers the period between 1985 and 2020.
Another key component of the GBDD is the identification of the gender of board members, which is a key innovation compared to other studies that use Orbis data. While the original data do not specify the gender of individuals until 2010, they do include names and surnames, which the creators utilized to perform gender identification. By applying cultural and linguistic heuristics, they were able to determine the gender of over 99 percent of the board members in their sample. For example, in some languages (e.g. Czech), surnames end with a gender-specific suffix, while in other languages (e.g. Polish), given names of women end with a vowel.
The GBDD reports several measures of gender board diversity computed for countries over time, as well as for sectors in each country over time. As such, it is a unique source of information about gender board diversity in corporate Europe, and it can serve as a useful guide for policymakers and analysts. The data are publicly available and can be downloaded in various formats from the website of the authors’ research group: https://grape.org.pl/gbdd.
The Absence of Women in Boardrooms
A key insight emerging from the GBDD is that, despite women holding on average 22 percent of all board positions in a given industry, more than two-thirds of all firms report no women in their boardrooms. More specifically, 68 percent of sectors across the European continent over the past several decades have not had a single firm with at least one woman in their boardrooms. Figure 1 shows the fraction of firms in a sector with no women in the boardroom. This is a new measure in the literature. The x-axis shows the proportion of such firms in a sector, ranging from 0 (all firms in that sector have at least one woman on their boards) to 1 (women are absent from all corporate boardrooms in the entire sector). The y-axis shows the relative number of sectors in the sample for each of the observed fractions.
Figure 1. Fraction of firms with no women in the boardroom
This finding points to clusters of companies with potentially significant obstacles to gender board diversity. Since lack of representation could be considered a major barrier to diversity, policies aimed at promoting even minimal representation of women among board members could have a significant impact on overall diversity.
The Substantial Differences Between Industries and Countries
The average firm-level share of women on corporate boards is only around 16 percent in the IT sector, while it is 35 percent in the education, health, and care (EHC) sector. Figure 2 shows two distributions of the average firm-level shares of women among board members: one for the IT sector and the other for the EHC sector. The distribution for the EHC sector is clearly to the right relative to the distribution for the IT sector, which means that across multiple countries and years, women tend to constitute a much smaller proportion of board members in the IT sector than in the EHC sector. Furthermore, the proportion of observations with no female board members (the spike at value 0) is much higher in the IT sector than in the EHC sector.
Figure 2. Distribution across sectors
Decomposing the data by country also highlights significant differences. For example, firms with no female board members tend to be more prevalent in Poland than in Finland. This is illustrated in Figure 3, where the distribution for Poland is shifted to the right relative to the distribution for Finland.
Figure 3. Distribution across countries
The above data suggest that there may exist a set of sector- and country-specific barriers to gender board diversity. Therefore, policies tailored to addressing those specific barriers could be more appropriate than blanket economy-wide policies.
Diversity Has Mildly Increased
The GBDD can also be used to assess how gender board diversity has evolved over time. Generally, there was an increase in diversity in the 1990s, stagnation in the 2000s, and another increase in the 2010s. However, in the case of supervisory boards, the recent increase in the proportion of female board members was not accompanied by an increase in the number of women on supervisory boards. While the full explanation of this observation would require further research, one possible interpretation is that supervisory boards might have become smaller over time, with male board members accounting for most of the decline, thus mechanically increasing the share of female board members.
Conclusion
Despite the increase in gender diversity among company board members over the last three decades, women still comprise a smaller share of board members and, in many cases, are completely absent from boards. While examining the reasons for this is beyond the scope of this policy brief, the high prevalence of firms with no women on their boards suggests the possibility that significant barriers to entry for women still exist, with this total lack of representation in many companies potentially being one. Policymakers interested in fostering an inclusive and fair society could focus their attention to understanding and removing barriers to board participation faced by women. Furthermore, identifying and tackling country- and sector-specific barriers to board diversity could be particularly impactful. The GBDD can be used by researchers and non-researchers alike to gain further insights into this topic, thus contributing to evidence-based policymaking.
Acknowledgement
The research outlined in this policy brief was funded by Norwegian Financial Mechanism 2014–2021 (grant # 2019/34/H/HS4/00481).
References
- Drazkowski, H., Tyrowicz, J., & Zalas, S. (2024). “Gender board diversity across Europe throughout four decades” Nature (Scientific Data), 11(1), 567.
- Nguyen, T. H. H., Ntim, C. G., & Malagila, J. K. (2020). “Women on corporate boards and corporate financial and non-financial performance: A systematic literature review and future research agenda.” International Review of Financial Analysis, 71, 101554.
Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.
Quota or not Quota? On Increasing Women’s Representation in Politics
All over the world, politics remains one of the most male-dominated spheres in society, in spite of the substantial progress made in achieving more gender balance in the last decades. A large number of countries worldwide have adopted some form of electoral gender quotas to accelerate this progress, but the empirical evidence on the effectiveness of such policy tools is mixed.
In this policy brief, we first discuss the potential impacts of gender quotas. Quotas may (a) increase women’s representation in political positions, or decrease it, if there are backlash effects; (b) improve or worsen the quality of selected politicians; and (c) bring about important policy changes, given the wealth of empirical evidence of gender differences in policy preferences, with, for instance, women appearing more concerned about health and the health system than men. We then provide an overview of the empirical evidence on quota impacts in the economics literature, and contextualize these findings with a special focus on the countries of the FREE (Forum for Eastern Europe and Emerging Economies) network. We end with policy advice on the design of gender quotas in the domain of politics.
Quotas in the World and in the FREE Network Region
According to the International Institute for Democracy and Electoral Assistance (IDEA), 127 countries worldwide currently use quotas with the goal of increasing the presence of women in governmental institutions. Broadly speaking electoral gender quotas can be classified into seat reservation and candidate lists quotas. The former limit the competition for a governmental seat to women, whereas the latter prescribe a minimum representation of women in electoral lists. Candidate quotas can be legislated, i.e. they constitute a legal requirement, or voluntary, whereby parties adopt quotas in their internal statute.
Table 1: Share of women in national parliaments (in %) FREE Network countries
The popularity of gender quotas is, however, not uniformly distributed across the globe. For example, while political gender representation is far from equal in most countries of FREE network region (see e.g. table 1), out of these countries only Armenia, Poland and Sweden dispose of electoral gender quotas (see figure 1).
Figure 1: Gender quotas in the FREE Network region
Since 2011, Armenia has had a legislated candidate quota of 40% for its National Assembly. This quota replaced a previous quota of 15%, passed in 2005 – one of the requirements to enter the Council of Europe (Itano 2007). Poland has also had a legislated candidate quota of 35% for the Lower House (the Sejm) as well as for subnational elections since 2011 (IDEA 2020; World Bank 2019). Sweden, the fourth most gender equal country worldwide according to the 2020 ranking of the World Economic Forum, and ninth in the women’s political empowerment sub-index, does not have legislated quotas. However, political parties themselves have decided to adopt voluntary quotas: the ruling Social Democrats use a zipper system in which the two sexes alternate on party lists; the Left Party has a minimum 50% quota for women, while the Green Party has a 50% gender quota (IDEA 2020). The Swedish Moderates, Liberals, Center parties and the extreme-right Swedish Democrats currently do not have gender quotas. The Swedish Democrats entered the parliamentary elections in 2018 with the highest share of male candidates observed among the Swedish parties – 70% (SVT 2020; SVT 2018).
In spite of their popularity among policy-makers worldwide, the merits of quotas are still largely debated. Opponents of gender quotas are often concerned about their effects on the meritocratic selection of politicians. Another common criticism is that nominating more female candidates may not automatically translate into more women in powerful positions. For instance, the shares of women in the Armenian and the Polish Parliament are 24 and 29% respectively (World Bank 2019), well below the national legislated candidate quota (it bears noting, however, that these shares have been growing over the last ten years, as shown in Figure 3). The respective shares of female ministers are 7% and 23% (Government of the Republic of Armenia 2020; OECD 2020,).
Figure 2: Share of women in national parliaments (in %)
Why is increasing women’s political participation considered a policy objective of utmost importance in many countries worldwide, and how can gender quotas help achieving it? In this brief we contribute to the ongoing debate on the merits of gender quotas, by offering an overview of their potential effects and by critically reviewing the empirical evidence from the most recent academic literature.
Which Effects Can We Expect From Quotas?
The primary objective of electoral quotas is to reduce gender gaps in representation in electoral lists and in the targeted representative institutions. Quotas can also activate trickle-up mechanisms, whereby gender gaps decrease in positions that are not directly targeted by the quota. The trickle up effect occurs, for instance, if women’s networks within parties or in governmental organizations help the promotion of female leaders. Furthermore, gender quotas may help to improve the quality of politicians. As noted by, among others, Bertrand (2018), a society likely improves the quality of its leaders when it enlarges the pool where those leaders are chosen from. A critical underlying assumption in this line of argument is that there are no major differences in the distribution of “political talent” between women and men. However, even with equal distribution of political talent, if the supply of women willing to enter politics is very limited and there are not enough qualified women to fill the quota positions, the average quality of a “quota” politician may end up being lower than that of her colleagues – and quotas may have the unintended consequence of reinforcing stereotypes against female politicians. This, in turn, may ultimately imply lower promotion rates of women to key positions and/or worse electoral support of female politicians, thereby undermining women’s political empowerment at various levels.
One of the most popular arguments in favor of the adoption of gender quotas is that women’s political preferences may not be adequately represented by male-dominated political bodies. Gender quotas, by increasing female representation among politicians (and possibly among voters), can thus help closing a potential gap in substantial representation. A large body of literature has documented gender differences in policy preferences, by considering, e.g. the size and composition of government spending after the expansion of suffrage to women (Kenny and Lott 1999), voting records in referenda (Funk and Gathmann 2015), survey data (see, e.g. Bagues and Campa 2020), or women’s contributions to legislative amendments (Lippmann 2020). In this historical moment when the world is plagued by a pandemic, the most important gender difference to emphasize seems to be in the area of health. Exploiting the federal referenda held between 1981 and 2001 in Switzerland, Funk and Gathmann (2015) show that Swiss women are more likely to be in favor of health, unemployment and social security spending than men, and less likely to be in favor of military spending. Similarly, based on survey data from a sample of nearly 60,000 Spanish residents, Bagues and Campa (2020) find that women are significantly more likely than men to report that the health system is one of the problems that affects them the most. Likewise, Lippmann (2020) analyzes the contribution of French legislators to amendments and finds that women are 25% more likely than men to initiate at least one amendment related to health issues. This gender difference regarding health policy is also visible in the European Social Survey (ESS), which covers a representative sample of the population of 19 European countries. When asked to give a general opinion on the current state of health services in their country, female respondents turn out to be significantly less satisfied than male respondents on average. The difference is statistically significant, albeit not particularly large (12% of a standard deviation) and holds in most of the countries included in the ESS. One potential reason behind this noticeable difference in satisfaction with health services is that women also report lower health status than men (10% of a standard deviation and statistically significant).
Figure 3: Self-reported satisfaction with the current state of national health services
A natural question to ask in spring 2020 is whether a world with more women among political leaders would have had health systems better equipped to face a pandemic. While we will never have a definite answer to this question, studies of the impacts of gender quotas can help assessing whether the gender of political leaders matters for policy decisions.
What is the Empirical Evidence on the Effects of Quotas?
Quotas increase women’s representation in electoral lists, but only when they are binding and appropriately enforced (i.e. the cost for parties of not complying with the quota must be high enough). Yet, when quotas are limited to the composition of electoral lists, the strategic positioning of female candidates in “not-winning” positions tends to undermine the quota effect on the election of women (see Esteve-Volart and Bagues, 2012, and Bagues and Campa, 2020). This seems to be the case of Poland: According to Gwiazda (2017), the lack of a placement mandate obliging parties to put women in the top positions of a party list, is indeed one reason why the Polish quota has not translated into a higher share of female representatives.
The evidence on the spill-over of quotas to higher positions is mixed. Two studies find that candidate quotas in Italy and Sweden increased the probability that women reach leadership positions, above and beyond the quota mandate (De Paola et al. 2010, O’Brien and Rickne, 2016). Bagues and Campa (2020), however, fail to establish similar evidence in Spain.
In studies of developing countries, Beaman et al. (2009) find that seat reservation in India improved male voters’ perception of female leaders, as well as women’s probability of being elected once the reservation was removed. Conversely, experimental evidence from Lesotho suggests that, if anything, a quota-mandated female representative reduces women’s self-reported engagement with local politics (see Clayton, 2015).
An increasing number of studies also examine the quota impact on the quality of the elected politicians, proxied by different measures. Baltrunaite et al. (2014) find that a gender quota improved the average education of elected politicians in Italy, and Besley et al. (2017) provide similar evidence looking at a measure of labor market performance in Sweden. Bagues and Campa (2020), studying candidate quotas in Spain, fail to find an improvement in the quality of politicians, measured by their education and electoral performance; however, their assessment is that the quota did not decrease quality either, contrary to the expectation of many quota opponents. However, Chattopadhyay and Duflo (2004) find that, in the context of seat reservations in rural India, quota candidates are less educated.
Finally, the evidence on whether gender quotas bring about policy change is scarce. Chattopadhyay and Duflo (2004) show that the reservation of the most important seat in Indian villages brought policy choices closer to women’s preferences. In Spanish municipalities, Bagues and Campa (2020) fail to find significant increases in the share of “female expenditures” (issues women have been found to care more about than men, based on surveys) over two legislatures when candidate quotas were used.
Conclusion
Gender quotas are a popular policy tool used to close existing gender gaps in political empowerment, which are large in many countries in the FREE Network. A growing economics literature on the impacts of gender quotas helps assessing what objectives policy-makers may be pursuing when they adopt them, and under which conditions these objectives can be achieved. There is a number of lessons to be learned from this literature.
First, the design of the quota is crucial for it to achieve its primary objective, which is to increase women’s presence in the targeted political positions. Placement mandates, for instance, are particularly important in the design of candidate quotas to avoid that women are strategically placed at the end of the ballot. Second, policy-makers need to take the local context into account. Whether a candidate quota can generate spill-overs to higher-level positions likely depends on the degree of centralization of political parties for instance; where party leaders are very powerful, we may be less likely to see an increase in the share of female leaders following the adoption of a candidate quota. Third, the question when gender quotas successfully bring about policy change needs additional investigation. Different factors likely play a role, such as: the type of position targeted by the quota (legislative or executive, local or national, etc.); the extent of the increase in representation achieved; the magnitude of the gender difference in preferences; the type of decision-making process prevailing (majority voting or unanimity); how the selection of politicians is affected by the quota; and how women’s influence on policy is measured. Studies that systematically vary some of these factors will improve our understanding of this area of research. Fourth, there is no overwhelming evidence of negative effects of gender quotas in a number of dimensions, at least over a medium-term horizon.
The case for adopting and testing different forms of gender quotas, perhaps in combination with additional measures, is therefore relatively strong. Overall, our assessment is that quotas will have to remain in policy-makers’ toolbox for some time if the worldwide effort to close the persisting gender gaps in political empowerment is to continue.
References
- Bagues, Manuel; and Pamela Campa, 2020. “Can Gender Quotas in Candidate Lists Empower Women? Evidence from a Regression Discontinuity Design.” CEPR Discussion Paper No. 12149.
- Bagues, Manuel; Mauro Sylos-Labini; and Natalia Zinovyeva, 2017. “Does the Gender Composition of Scientific Committees Matter?”. American Economic Review, 107(4), pp. 1207–1238.
- Baltrunaite, Audinga; Piera Bello, Alessandra Casarico; and Paola Profeta, 2014. “Gender Quotas and the Quality of Politicians”, Journal of Public Economics, 118, pp. 62-74.
- Beaman, Lori; Raghabendra Chattopadhyay; Esther Duflo; Rohini Pande; and Petia Topalova, 2009. “Powerful Women: Does Exposure Reduce Bias?”. Quarterly Journal of Economics, 124(4), pp. 1497–1540.
- Besley, Timothy; Olle Folke; Torsten Persson; and Johanna Rickne, 2017. “Gender Quotas and the Crisis of the Mediocre Man: Theory and Evidence from Sweden”, American Economic Association, 107(8), pp. 2204-2242.
- Bertrand, Marianne, 2018. “Coase Lecture – The Glass Ceiling”. Econometrica 85, pp. 205-231.
- Chattopadhyay, Raghabendra and Esther Duflo, 2004. “Women as Policy Makers: Evidence from a Randomized Experiment in India”. Econometrica, 72, pp. 1409-1443.
- Clayton, Amanda, 2015. “Women’s Political Engagement Under Quota-Mandated Female Representation: Evidence From a Randomized Policy Experiment“. Comparative Political Studies, 48(3), pp.333 –369.
- Dahlerup, Drude (Ed.), 2006. “Women, Quotas and Politics”. Routledge, Taylor & Francis Group.
- De Paola, Maria; Vincenzo Scoppa; and Rosetta Lombardo, 2010. “Can gender quotas break down negative stereotypes? Evidence from changes in electoral rules”. Journal of Public Economics 94 (5), pp.344-353.
- Esteve-Volart, Berta; and Manuel Bagues, 2015. “Politicians’ Luck of the Draw: Evidence from the Spanish Christmas Lottery”, Journal of Political Economy, 124(5), pp. 1269-1294.
- Funk, Patricia; and Christina Gathmann, 2015. “Gender gaps in policy making: evidence from direct democracy in Switzerland”. Economic Policy, 30 (81), pp. 141–181.
- Government of the Republic of Armenia, 2020. Structure.
- Gwiazda, Anna, 2017. “Women in parliament: assessing the effectiveness of gender quotas in Poland”. Journal of Legislative Studies, 23(3), pp. 326-347.
- IDEA (Institute for Democracy and Electoral Assistance), 2020. Gender Quota Database.
- Itano, Nicole, 2007. “Quota Law Puts More Women in Armenia’s Election“. Women’s eNews.
- Kenny, Lawrence W. and John R. Lott, 1999. “Did Women’s Suffrage Change the Size and Scope of Government?”. Journal of Political Economy, 207, pp. 1163- 1198.
- Lippmann, Quentin, 2020. “Gender and Lawmaking in Times of Quotas.”
- O’Brien, Diana and Johanna Rickne, 2016. “Gender Quotas and Women’s Political Leadership”. American Political Science Review. 110(1), pp. 112-126.
- OECD (2020), Women in politics (indicator).
- SVT, 2018. “Här är partierna som har högst och lägst andel kvinnor bland kandidaterna”.
- SVT, 2020. “Ny mätning: SD Sveriges största parti“.
- World Bank Data, 2019. “Proportion of seats held by women in national parliaments (%)”.
- World Economic Forum, 2019. “Global Gender Gap Report 2020”. ISBN-13: 978-2-940631-03-2.
Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.
Does Gender Diversity Actually Matter?
Measuring the effects of gender diversity on performance is important to understand the impact of gender quotas. However, the effects of gender diversity remain understudied. We need data with a reliable assessment of team member quality to disentangle the effects of diversity from compositional effects (when higher-quality women replace mediocre men). We use the unique database of the trivia game “What? Where? When?” which has information on both the performance and gender composition of the team and allows to track each player individually. We find that the gender diversity of the team has no statistically significant effect once we control for the quality of each player. In this particular environment, with little evidence of gender discrimination, instruments like gender quotas have no merit. This result does not apply to discriminatory environments where gender quotas could bring benefits through compositional effects.
Introduction
As gender quotas have been widely introduced in politics and in the corporate world, the effects of gender diversity have become the center of attention of many economists. Many observational studies find positive effects of gender diversity on corporate boards’ performance (Desvaux, Devillard, & Sancier-Sultan, 2010). Other studies, using the introduction of gender quotas in boards as a natural experiment, find negative effects on stock valuation, which disappear in the longer run (Ahern and Dittmar, 2012; Matsa and Miller, 2013; Eckbo et al., 2019).
The effect of gender diversity on team performance may run through two different mechanisms. One mechanism is compositional effects due to discrimination: if women face a glass ceiling, only the best women get into teams/boards, and they are on average of higher quality than men. Hence, boards with female representatives perform better. The discrimination mechanism has been shown to be at work in the political setting, for example: gender quotas in parties lead to higher-quality women replacing mediocre men (Besley et al., 2017). The other mechanism is the true effect of gender diversity through complementarity between men and women: if they differ substantially in some dimensions, these differences might become the source of better team decisions, or, on the contrary, inefficiencies in decision-making.
To separate between the two mechanisms – compositional effects and diversity effects – we need data with reliable quality measurement for each team member. Controlling for team member quality would take care of the compositional effect, and the gender composition would be significant only if there is a true gender diversity effect.
We use the What? Where? When? trivia game dataset to measure the effects of gender diversity on team performance with and without control for a player’s quality.
The What? Where? When? Game
What? Where? When? (WWW) is a team-played trivia game popular in post-Soviet countries. Teams of six players are asked questions and have one minute to come up with an answer. Typically, in order to find the correct answer, a team needs to combine both logical thinking and knowledge. A tournament usually consists of 36-90 questions. The team with the most correct answers wins the first place. In 2003, a unified database of the game was created. This database contains records of more than 218,000 individuals who have played in at least one of the 6,000 recorded tournaments.
The What? Where? When? Dataset
A unit of observation in our dataset is one game played by a team. It contains the unique ID of the team, the ID of each player, information about the number of games played by the team and by each player, the tournament date, the difficulty of the tournament and the number of teams. We identify the gender of the players through their names and patronymic names. Overall, we use 74,475 team-game observations which were played by 2,854 teams (23,000 single players) from 2013 to 2018.
Performance Measure
The measure of a team’s performance in a tournament is the percentage of correct answers normalized by the average percentage of correct answers in this tournament. We use player’s individual fixed effects as a measure of their quality in our regression analysis.
Gender Aspects in What? Where? When?
Only 31.5% of the players in the sample are female, however, other than that, we fail to find any significant evidence indicating gender discrimination or segregation. Table 1 presents the actual shares of team-game observations by gender composition as well as the predicted shares if assignment to teams was random. The difference between the actual shares and predicted shares does not appear to be economically significant.
Table 1: The actual distribution of women across teams is not different from random
Results
The basic model of our analysis, Model 1 examines the association between the performance of a team, normalized by tournament difficulty, with dummy variables for gender diversity (defined as the number of minority gender players in the team, i.e. diversity_1 is true if there is only one woman or only one man on the team). We also include the individual fixed effects of each player in the second specification (Model 2), to control for the quality of players and rule out possible composition effects.
Table 2. Effect of diversity on performance with and without the individual quality controls
The coefficients of Model 1 and 2 are shown in Table 2. While diversity is significant in the first specification, after accounting for the individual quality of players, we cannot reject the hypothesis of insignificance of gender diversity. These results hold under different specifications: with controls for player experience, with different player experience cutoffs, or including the neural network-generated predictions of performance.
Figure 1. The distribution of individual coefficients (proxy for player quality) for female and male players
Figure 1 presents the distributions of individual coefficients of female and male players. In our sample, the female distribution centers slightly to the left of the male one. It explains the negative diversity coefficients in the specification without the individual fixed effects – in this case, the diversity dummies capture the lower average quality of female players.
Conclusion
Our study aimed at disentangling compositional and pure effects of gender diversity by using a novel dataset of a team played trivia game. Our main finding is that after accounting for the individual quality of team members, the gender composition of a team does not appear to be significant for a team’s performance.
Although it is always dangerous to extrapolate findings obtained in specific settings, we believe that the positive gender diversity effects found in other studies are often manifestations of the change in the average quality of team/board members i.e. compositional effects rather than gender diversity effects per se. From a policy point of view, this means that while we need gender quotas in areas suffering from gender discrimination, once we reach equal opportunities such instruments may no longer have any positive effects.
References
- Ahern, Kenneth R., and Amy K. Dittmar, 2012. “The changing of the boards: The impact on firm valuation of mandated female board representation.” The Quarterly Journal of Economics 127.1: 137-197.
- Besley, Timothy, Olle Folke, Torsten Persson, and Johanna Rickne, 2017. “Gender quotas and the crisis of the mediocre man: Theory and evidence from Sweden.” American Economic Review 107, no. 8 : 2204-42.
- Desvaux, Georges, Sandrine Devillard, and Sandra Sancier-Sultan, 2010. “Women at the top of corporations: Making it happen.” McKinsey & company : 7-8.
- Eckbo, B. Espen, Knut Nygaard, and Karin S. Thorburn, 2019. “Board Gender-Balancing and Firm Value.” Dartmouth College working paper.
- Matsa, David A., and Amalia R. Miller, 2013. “A female style in corporate leadership? Evidence from quotas.” American Economic Journal: Applied Economics 5.3: 136-69.
Gender and Development: the Role of Female Leadership
This policy brief reports on a discussion of the role of female leadership in development held during a full day conference at the Stockholm School of Economics on June 16, 2014. The event was organized jointly by the Stockholm Institute of Transition Economics (SITE) and the Swedish Ministry for Foreign Affairs, and was the fourth installment of Development Day – a yearly development policy conference. It is well known that women fall behind men on many markers of welfare and life opportunities, both in developed and developing countries. For most indicators, though, such as education and labor force participation, both the absolute and relative position of women tend to improve with economic development. However, in some areas the beneficiary effect of raising incomes is less clear. Access to leadership positions and decision-making roles are examples of such areas. To discuss this question, the conference brought together a distinguished and experienced group of policy oriented scholars and practitioners from government agencies, international organizations, civil society and the business community.