Tag: Green transition

Green Concerns and Salience of Environmental Issues in Eastern Europe

Flooded street in Germany representing climate change risk perceptions

Changes in individual behavior are an essential component of the planet’s effort to reduce carbon emissions. But such changes would not be possible without individuals acknowledging the threat of anthropogenic climate change. This brief discusses the climate change risk perceptions across Europe. We show that people in Eastern Europe are, on average, less concerned about climate change than those in Western Europe. Using detailed survey data, we find evidence that the personal experience of extreme weather events is a key driver of green concern, and even more so in the non-EU Eastern part of Europe. We argue that this association might be explained by the relatively low quality and informativeness of public messages concerning global warming in this part of Europe. If information is scarce or perceived as biased, personal experience will resonate more.

Introduction

Climate change is one of the main threats to humanity. Tackling it entails a combined effort from all parts of society, from regulatory changes and industries adopting new greener business models to consumers adjusting their behavior. While an individual’s contribution to climate change may appear insignificant, research shows that the aggregate effect of mobilizing already known changes in consumer behavior may allow the European Union (EU) to reduce its carbon footprint by about 25% (Moran et al., 2020).

However, the first step for people to adjust their consumption patterns is to acknowledge the threat of anthropogenic climate change. Public ignorance about climate change’s impacts remains high across the world. Furthermore, citizens of more polluting countries are often relatively less concerned about climate change. This lack of awareness is not well-understood, in part due to the multi-dimensional local factors affecting it (Farrell et al., 2019).

This brief discusses the potential drivers of climate risk perceptions, focusing on the differences between Western Europe, Eastern European states that are part of the EU, and non-EU Eastern European countries. We first present the climate change concerns across these regions. We then discuss to which extent the country’s pollution exposure measures and individuals’ socio-economic characteristics can explain these differences. We show that the personal experience of extreme weather events is a key driver of green concern, and even more so in the non-EU part of Eastern Europe. We relate this result to the relatively low salience and informativeness of public messages concerning climate in this part of Europe and discuss potential policy implications.

Green Concerns and Pollution Exposure Across Europe

Figure 1 compares, across Europe, the share of poll respondents who see climate change as a major threat, based on the data from the Lloyd’s Register Foundation World Risk Poll 2020.  While there is a significant variation in climate risk perception within each region, respondents in Eastern Europe are, on average, less concerned about climate change than those in Western Europe. We observe a similar pattern between the EU and non-EU parts of Eastern Europe. 

Exposure to pollution does not seem to clearly explain these differences. Moreover, the patterns of correlation between climate concern and pollution differ across regions and measures of pollution exposure. The left panel of Figure 2 presents averages across the regions for two pollution measures: carbon emissions (which is, perhaps, reflecting climate threat in general) and air quality (which is more directly associated with health risks). We can see that CO2 emissions are the highest in the non-EU part of Eastern Europe, the least environmentally concerned region. Still, the EU part of Eastern Europe has the lowest average emissions per capita across the three regions (this ranking likely results from the interaction between reliance on fossil fuels, industrial structure, and level of development across the three regions). At the same time, when it comes to the average air quality (measured as the percentage of population exposed to at least 10 micrograms of PM2.5/m3), the non-EU EasternEuropean region is doing better than its EU counterpart, which is more climate concerned. Here, better average air quality in the non-EU Eastern European region is due to its relatively low population density, and consequently, low PM2.5 exposure in large parts of Russia. (See, more on the air quality gap within the EU in Lehne, 2021).

Figure 1: Climate concerns in Eastern and Western Europe

Source: Authors’ calculations based on Lloyd’s Register Foundation World Risk Poll 2020, question 5 “Do you think that climate change is a very serious threat, a somewhat serious threat, or not a threat at all to the people in this country in the next 20 years?”. Averages are calculated with population-representative weights.

The right panel of Figure 2 shows correlations between (country-level) climate concerns and pollution. For CO2, the correlation is negative in all three regions, suggesting that, within each region, more emitting countries are less concerned. This negative correlation, however, is the strongest in the EU-part of Eastern Europe and almost absent in the non-EU part. The differences between the regions are even more striking for the correlation between climate concerns and air quality: both in Western Europe and in the EU part of Eastern Europe, citizens of countries with worse air quality are more concerned about climate change. However, in non-EU Eastern Europe, the relation is the exact opposite: lower concerns about climate change go hand-in-hand with worse quality of air.

Figure 2: Emissions vs. Climate concerns in Eastern and Western Europe, 2018

Source: Authors’ calculations based on www.climatewatchdata.org, OECD and World Risk Poll 2020. The climate concern variable is a country-level weighted average of answers “Very high risk” to the World Risk Poll 2020 question 5, see note to Figure 1.

Green Concerns and Socio-economic Characteristics

Lower climate concerns in EU-part of the Eastern bloc have been documented before; they are often explained by the Eastern-European economies’ high reliance on coal and other fossil fuels, low-income levels, and other immediate problems that lower the priority of climate issues (e.g., Lorenzoni and Pidgeon 2006, Poortinga et al., 2018, or Marquart-Pyatt et al., 2019). Additionally, the literature suggests that climate beliefs are linked to individuals’ socio-economic characteristics, such as level of education, income, or gender (see, e.g., Poortinga, 2019), which may be different across the regions.

However, the regional differences in climate beliefs also persist when we use individual-level data and control for respondents’ individual characteristics, as well as for country-level variables, such as GDP per capita, oil, gas, and coal dependence of the economies, and exposure to emissions (at the country level, as our individual data does not have this information). This is illustrated in Column 1 of Table 1.

Table 1: Climate change beliefs determinants, individual-level cross-section data.

Source: This is an outcome of logistic regression. Experience =1 if the respondent answered “yes” to the World Risk Poll 2020 question L8D “Have you or someone you personally know, experienced serious harm from severe weather events, such as floods or violent storms in the past TWO years?” Media Freedom is based on 2018 Freedom House data, and scores media between 0 (worst) and 4 (best). Controls include age, gender, education, personal feelings about household income, income quantile, urban/rural, size of household, number of children under 15, las well as log of GDP per capita, log of CO2 per capita, mean exposure to PM2.5, and oil, gas and coal rents as a share of GDP. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

In what follows, we explore another key driver, the personal experience of extreme weather events. While there is a sizable literature on the effect of experience on climate beliefs, that factor was never, to our knowledge, considered to understand the difference in climate risk perception between the EU- and non-EU parts of Eastern Europe.  

Green Concern and Salience of Environmental Issues

In line with the recent climate risk perceptions literature (e.g., Van der Linden, 2015), we show that personal experience increases the likelihood of considering climate change as a major threat across all three regions (see column 2 in Table 1). The association is stronger in the EU part of Eastern Europe and even more so in the non-EU part (even if the difference between the last two is not statistically significant). This finding is confirmed when we control for (observable and unobservable) country-specific effects, such as social norms, via the inclusion of country-level fixed effects. In this case, extreme weather events make respondents more climate-conscious within each country (Column 3 of Table 1). In this specification, the effect differs statistically between the two groups of Eastern-European countries, even if only at a 10% significance level. To put it differently, the impact of personal experience with extreme weather events seems to close a sizable part of the gap in climate risk perceptions across the regions and more so in the non-EU part of Eastern Europe.

Our preferred explanation for this finding is that personal experience resonates with the quality and informativeness of public messages concerning global warming. If information is scarce or perceived as biased, personal experience will resonate more. The low political salience of environmental issues in Eastern Europe, inherited from its Soviet past (McCright, 2015), and lower media quality in Eastern Europe (see e.g., Zuang, 2021) are likely to affect the quality of public discourse concerning the risks of climate change, and, consequently, the information available to individuals.

The climate-related legislative effort across Eastern Europe reflects the low political importance of climate change in the region. According to the data from Grantham Research Institute on Climate Change and the Environment, non-EU transition countries, on average, have adopted 8 climate-related laws and policies, while the corresponding figure is 11.5 for EU transition countries and 18 for the countries in Western Europe. Further, Figure 3 shows a positive correlation between climate change concerns and the number of climate-related laws for Western Europe and the EU-part of Eastern Europe but a negative one for the non-EU part of Eastern Europe and Caucasus countries. One possible interpretation of these differences is that climate change is relatively low on the political agenda of (populist) regimes in the non-EU part of Eastern Europe, as climate-related legislative activity (proxied by, admittedly rough, a measure of the number of laws) does not reflect the intensity of population climate preferences.

Figure 3: Climate concern vs. Climate legislation

Source: Authors’ calculations based on climate legislation data from Grantham Research Institute on Climate Change and the Environment, and World Risk Poll 2020

Regarding the influence of media quality, column (4) of Table 1 shows that the effect of personal experience on climate change concern is negatively correlated with media freedom. One interpretation could be that individuals in countries with freer media infer less from their extreme weather experience because more accurate media coverage about climate risks improves the population’s knowledge on the issue.

Of course, the causality of the climate belief-experience relationship could also go in the other direction – people who are more concerned about climate change could be more likely to interpret their personal experience as weather-related extreme events. It is impossible to distinguish with the data at hand. However, Myers et al. (2013) show that both channels are present in the US, and the former channel dominates for the people less engaged in the climate issue. Stretching this finding to the Eastern Europe case, we argue that more precise information on the importance of climate change may partially have the same effect as experience – i.e., it will increase people’s awareness and concern about the consequences of global warming.

Conclusion

This brief addresses the differences in climate change beliefs between Eastern and Western Europe, as well as within Eastern Europe. It discusses the determinants of these differences and stresses the importance of personal experience, especially in the non-EU part of Eastern Europe. It relates this finding to the relatively low accuracy of information and quality of public discourse about climate change in the region.

We know already that tackling climate change requires reliable and accurate sources of information. This is especially crucial given what we outline in this brief. This issue resonates with the current social science analysis of the diffusion of climate change denial (see e.g., Farell et al., 2019, on the significant organized effort in spreading misinformation about climate change). Such contrarian information that relays uncertainty and doubt regarding the severity of the global climate change threat could have a severe impact, especially in situations with low political salience of climate change, like in non-EU Eastern Europe. A significant effort of both governments and civil society is needed to provide adequate information and mobilize the population in our common fight against climate change.

References

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Green Transition: Adapting Markets and Policies

20141215 Green Transition Image 03

This policy brief summarizes the discussion at the 8th annual SITE Energy Day conference, devoted to market adaptations and policies necessary to address the green transition. Recent energy trends with ever more green energy-mixes will have consequences for the functioning of related markets as well as implications for appropriate policy responses. New financial solutions, technological developments, international cooperation, and national policy initiatives in both developing and developed countries are examples of adaptations to this transition process. To discuss these issues, the conference brought together a group of distinguished experts from the energy industry, policy community and academia.

In December 2014, world leaders have gathered in Peru (Lima) for the 20th annual meeting of the United Nations Framework Convention on Climate Change. This convention has as an objective to “stabilize greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system” (see UNFCCC’s webpage). Even though the agreement to reduce emissions to a sustainable level may take years to be negotiated, at least 195 countries have ratified the UFCCC convention. The willingness to reduce environmentally harmful emissions has led to many countries changing their energy profile to include more green energy, a process that is often referred to as “green transition”.

It may be worth mentioning that the label “green transition” consists of two conceptual components. “Green” refers to the ability to generate environmentally friendly energy, which has become a key challenge for our society. Indeed, a majority of people now recognize the pressing need to cut pollution in the face of climate change and environmental degradation. The wording “transition” acknowledges that a shift toward a greener energy mix seems unavoidable, but this shift may not occur immediately or uniformly around the globe. The required time for change is long and the shift itself may not be smooth. To put it differently, the green transition has had and will continue to have wide-ranging consequences for businesses, governments, and the international community.

As a result, there is a need to carefully address the potential implications for the existing energy and related markets and market players, and for government policies, as well as new markets and new policies triggered by the green transition. These topics were the focus of the 8th SITE Energy Day, a half-day conference held at the Stockholm School of Economics on December 2, 2014.

Green Transition and the Energy Markets

The first panel focused on how energy markets have responded to green transition and how they may react in the future. Speakers from electricity companies, regulatory bodies and think tanks discussed how the green transition may affect the use of traditional financial instruments by energy companies; the choice of economically viable technology for producing green energy; and the way markets could be integrated to increase the efficiency of green energy.

As green transition almost always introduces more intermittent production, it is likely that market uncertainty will increase. This is one of the reasons why traditional financial instruments may not be fully adequate. The first speaker Laurent Cheval, Head of Nordic and Fuel Origination in the business division Asset Optimization & Trading at Vattenfall discussed this issue extensively. Energy companies face substantial financial risks since both prices and quantities may be highly volatile. To mitigate these risks, market participants may use an array of financial products. In mature energy markets, the products are fairly standardized. However, more complex and tailor-made financial products are required to face the ongoing changes in the sector. For example, the increased share of renewable energy combined with more interconnected markets create specific market risks. To hedge against risks associated with weather changes, future fuel costs, interest rates and so on, more and more energy providers trade customized derivatives “over-the-counter” (OTC) rather than through a centrally-cleared exchange. Another example is the development of decentralized power production and the rise of the “Prosumer” who simultaneously produces and consumes power. So far, the relevant regulation is underdeveloped and there is an additional demand for innovative financial solutions. Large energy companies such as Vattenfall are for instance offering a range of financial hedging solutions combined with actual physical handling and delivery of energy products.

Green transition should in the long run lead to a domination of environment friendly energy. However it is important that only economically viable technologies subsist. It is therefore necessary to assess the cost of producing green energy. Lars Andersson, Head of Wind Power Unit at the Swedish Energy Agency, reported on an extensive study done by the Agency on this issue. Over the last five years, the production cost of wind power has fallen consistently and capacity usage has increased. This dramatic change in the wind power industry likely implies that the existing subsidies for building wind power plants gradually will be phased out. It is unclear how the industry will react to these cuts in subsidies. Furthermore, according to Andersson, wind production faces at least two challenges. Without developing the capabilities for energy storage, electricity markets will face more energy imbalances as the share of wind power increases. Additionally, the support from the local communities is needed to ensure an expansion of wind power. Addressing these issues requires the development of new regulation and defining a common goal which may promote cooperation between stakeholders.

Ultimately the green transition will end when and if the green energies are largely adopted around the globe. One way to accelerate this green transition may be to coordinate action and development of governmental policies. Martin Ådahl, Chefsekonom at Centerpartiet, and Daniel Engström, Programchef Miljö och Klimat at Fores, presented the current state of the international climate policy and discussed the benefits of linking carbon emission rights markets. Because of conflicting interests, the likelihood of reaching an agreement within the current United Nations climate negotiations is rather small.

However, Ådahl and Engström suggested that the focus should instead be on reaching agreements between big polluter countries that contribute the lion’s share of global emissions. Indeed, regional emission trading schemes already exist in the EU, the US and China, the three regions which together account for over 50 percent of global emissions. One potential shortcoming of this suggestion is that it may not be enough to stabilize greenhouse gas concentrations in the atmosphere. Thereby, Ådahl and Engström discussed the possibility to link current cap-and-trade markets, as a first step toward an international system with a more formal global agreement. Linking cap-and-trade markets has many benefits, especially in the form of efficiency gains. However, emission caps vary across countries and regions because of different political goals or priorities. When markets are linked, difference in abatement costs (or allowance prices) would lead to a flow of allowances and emissions from countries/regions with low abatement cost to countries with higher ones. Thereby prices would be equalized, benefiting entities with cheaper allowances. To avoid opportunistic behavior, countries would first have to agree ex ante on an exchange rate between different countries’ emission rights. Second, a clear regulatory framework is required. Both Ådahl and Engström emphasized the need of an international organization devoted to climate economics. Such an institutional body could not only regulate the links between cap-and-trade markets, but also provide concrete solutions and technical models to improve on the market design.

Environmental Policies: International Experience

The second panel focused on how governments may promote green transition. Anna Pegels, Senior Researcher at the German Development Institute (DIE), reviewed green policy initiatives in developing countries. Pegels argued based on evidence from e.g. India and South Africa that it is possible to combine substantial growth with green energy. This is good news since emerging countries are among the highest polluters. However, to change a country’s energy profile, governments need to intervene and develop new industrial policies.

Governments can set long-term goals, which are supported by short- and mid-term targets. However, given the large profits that are at stake, officials may likely be subject to the risk of capture and corruption. To limit such risks, Pegel emphasized the need to introduce competition in the energy sector as a whole. Subsidized feed-in tariffs for renewable energy for example should be only a first step, to reach a certain scale of production. But the technology is mature enough that producers should be able to bear some additional risk in their current activity. This should increase the scope for competition. Finally, it is essential that governments continuously engage in policy revision cycles and learn from other countries’ experiences.

Benjamin Sovacool, Professor of Business and Social Sciences at Aarhus University and Director of the Danish Centre for Energy Technologies, talked about the process of low carbon transition in the Nordic region. In spite of large investments into renewable energy, fossil fuels still dominate the consumption in the Nordic countries and considerable measures need to be taken in the decades ahead to make the transition to a greener energy mix. Sovacool highlighted four areas which could help reduce the carbon footprint of the Nordic countries: renewable energy, increased energy efficiency of buildings, transportation, and carbon capture and storage (CCS). In order to be successful, the green transition has to bring about a systemic change engaging actors across the economy, particularly including end-users. There should also be a focus on additional technological progress. Finally, Sovacool noted that a rapid emission reduction such as the one planned in the Nordic countries is unlikely to be followed on a global scale in the near future due to a lack of political feasibility.

Conclusion

The green transition is expected to have a profound impact on the functioning and structure of energy markets as well as the policies that facilitates this transition.

There is an ongoing process of decentralization in the energy sector, with the rise of “prosumer” market places that alter market dynamics. Moreover, market uncertainty is increasing due to more intermittent production (due to renewables) and a stronger interconnectedness between energy markets. It is likely that energy imbalances will be a major concern and that more and more energy trade will take place on real time markets (as opposed to e.g. on the day-ahead market). As markets’ linking becomes stronger, the interdependence between markets in terms of energy type and geographical location will be intensified. The need for coordination and international cooperation will be even more pressing. The uncertainty regarding the development of international cooperation, but also regarding national policy changes, may however disrupt energy markets. Measures such as withdrawing existing subsidies must be handled in a gradual and strategic manner so as not to discourage investment. A key issue for governments is to have a credible green policy in the long-term. Such credibility will also depend on the level of involvement of different actors in the green transition, including the necessity to have a multilevel engagement of the end-users.

References

  • Energimyndigheten, (2014), Produktionskostnads-bedömning för Vindkraft i Sverige, ER 2014:16
  • Pegels, A. (Ed.). (2014), Green industrial policy in emerging countries, Vol. 34, Routledge
  • Rutqvist, J., Engström, A.and Ådahl, M., A Bretton Woods for the Climate. Fores, 2010
  • SITE 8th Energy Day, http://www.hhs.se/en/about-us/calendar/site-external-events/2014/site-energy-day/
  • UNFCCC, (n.d). First steps to a safer future: Introducing The United Nations Framework Convention on Climate Change, http://unfccc.int/essential_background/convention/items/6036.php [8 December 2014]