Tag: hate crime

Social Media and Xenophobia

Man with a cell phone in hands spending time on social media

We study the causal effect of social media on hate crimes and xenophobic attitudes in Russia, using variation in social media penetration across cities. We find that higher penetration of social media leads to more ethnic hate crimes, but only in cities with a high baseline level of nationalist sentiment prior to the introduction of social media.  Consistent with a mechanism for the coordination of crimes, the effects are stronger for crimes with multiple perpetrators. We show that social media penetration also had a persuasive effect on young and uneducated individuals, who became more likely to have xenophobic attitudes.

In recent years, the world has witnessed a large increase in expressions of hate, particularly of xenophobia. Candidates and platforms endorsing nationalism and views associated with intolerance toward specific groups have also gathered increased popular support both in the U.S. and across Europe. There is a lot of speculation about the potential drivers of this increase in the expression of hate. In our recent paper (Enikolopov et al, 2019) we study the role of social media in this process. This brief introduces the topic and offers a short outline of our findings.

Conceptually, social media could foster hate being expressed through different channels. First, social media reduces the cost of coordination. For example, there is evidence that it facilitates political protest (Enikolopov, Makarin, Petrova, 2018). Coordination facilitated through social media might be particularly relevant for illegal and stigmatized activities, such as hate crime: social media might make it easier to find like-minded people (through targeted communities and groups); it might also reduce the cost of asking or exposing oneself by providing a more anonymous forum for social interactions. Social media might also influence people’s opinions: tolerant individuals might be more exposed to intolerant views, while intolerant individuals might end up in an “echo chamber” (Sunstein 2001, 2017, Settle 2018) that make their views even more extreme. In our paper, we study the causal effect of social media exposure on xenophobic crimes and xenophobic attitudes in Russia and provide evidence on the particular mechanisms behind these effects.

The challenge in identifying a causal effect of social media is that access and consumption of social media are not randomly assigned. To surmount this challenge, we follow the approach of Enikolopov et al. (2018) and exploit a feature of the introduction of the main Russian social media platform – VKontakte (VK). This social media, which is analogous to Facebook in functionality, was the first mover on the Russian market and secured its dominant position with a user share of over 90% by 2011. VK was launched in October 2006 by Pavel Durov, its founder, who at that time was an undergraduate student at St Petersburg State University (SPbSU). Initially, users could only join the platform by invitation, through a student forum of the University, which was also created by Durov.

As a result, the vast majority of the early users of VK were students of SPbSU. This, in turn, made their friends and relatives more likely to open an account. And since SPbSU attracted students from around the country, this sped up the development of VK in the cities, from which these students were coming from. Network externalities magnified these effects and, as a result, the idiosyncratic variation in the distribution of the home cities of Durov’s classmates had a long-lasting effect on VK penetration. Following this logic, we use fluctuations in the distribution of student of SPbSU across cities as an instrument for the city-level penetration of VK. We then evaluate the effect of higher VK penetration on hate crimes and hate attitudes, combining data on hate crimes for the period between 2007 and 2015 collected by a reputable Russian NGO SOVA with survey data on hate attitudes.

Previous findings indicate that whether information from media induces people to be involved in the active manifestation of xenophobic attitudes or not depends on predispositions of the population. For example, Adena et al (2015) demonstrate that radio propaganda by the Nazis in the 1930’s was effective only in areas with a historically high levels of anti-Semitism. The role of the underlying level of nationalism is likely to be even stronger for social media, in which the content of the media itself directly reflects the attitudes of the population. This is particularly relevant for hate crimes committed by multiple perpetrators, in which social media can facilitate the coordination of such crimes.

Thus, we test whether the effect of social media depends on the pre-existing level of nationalism. To get at this underlying sentiment, we break cities by their level of support for the Rodina (“Motherland”) party, which ran in the national 2003 elections (the last parliamentary elections before the creation of VK) on an explicit nationalistic, xenophobic platform.

We find that penetration of social media leads to more ethnic hate crimes, but only in cities with a high baseline level of nationalist sentiment prior to the introduction of social media. For example, in cities with a maximum level of support of Rodina an increase in the number of VK users by 10% lead to an increase in ethnic hate crimes by 20%, while it had no significant effect on hater crime in cities with minimal support of Rodina. There is also no evidence that future social media penetration is related to ethnic hate crimes before the creation of social media, regardless of the level of pre-existing nationalistic attitudes.

Further evidence is consistent with social media playing a coordination role in hate crimes. The effect of social media is stronger for crimes perpetrated by multiple individuals (as opposed to crimes committed by a single person), where coordination is more important. These heterogeneous effects are also not consistent with results being simply driven by a higher likelihood of hate crime in places with higher social media penetration, unless this effect were present precisely in cities with higher support for Rodina and for crimes with multiple perpetrators, for example – which we find unlikely.

Having found evidence of a causal effect of social media on ethnic hate crimes, consistent with a mechanism of coordination, we turn next to the impact of social media on xenophobic attitudes. We designed and organized an online survey, and launched it in the summer of 2018, reaching 4,327 respondents from 64 cities. To measure xenophobic attitudes, we examined answers to the question “Do you feel irritation of dislike for individuals from some other ethnicities?” Note that, unlike the coordination of hate crimes, the persuasive effects of social media are not necessarily expected to be strongest in cities with higher baseline nationalistic sentiment since individuals on social media can get as easily connected to people outside their city. In fact, it is conceptually possible that the persuasion would be stronger in cities with lower baseline nationalistic sentiment: individuals might have previously been less aware of and less exposed to these types of views before the introduction of social media.

Since there might be a stigma in reporting xenophobic attitudes even in anonymous surveys, we use a “list experiment” to approximate “truly-held” xenophobic attitudes. In particular, the list experiment works as follows: first, respondents are randomly assigned either into a control group or a treatment group. Respondents in all groups are asked to indicate the number of policy positions they support from a list of positions on several issues. Support for any particular policy position is never indicated, only the total number of positions articulated on the list that a respondent supports. In the control group, the list includes a set of contentious, but not stigmatized, opinions. In the treatment group, the list includes all the contentious opinions from the control list, but also adds the opinion of interest, which is potentially stigmatized. The degree of support for the stigmatized opinion can be assessed by comparing the average number of issues supported in the treatment and control groups. The question of interest, randomly added to half of the questionnaires, was “Do you feel irritation of dislike for individuals from some other ethnicities?”.

The results indicate that the average share of people who agree with the statement is 37%. While there is no significant effect of social media penetration on xenophobic attitudes for the whole sample, there is a significant effect for important subsamples, which are at a higher risk of being involved in hate crime, such as respondents with lower levels of education or young respondents. Of course, the individuals that became more likely to engage in hate crime are not necessarily the same that have been persuaded to have more xenophobic attitudes (especially given the question used to assess attitudes) – though it is possible that some individuals who would have been close to committing crimes in the absence of social media might have been persuaded enough to switch their behavior in the presence of social media.

At the same time, we do not find that social media leads to an increase in xenophobic attitudes when measured with a direct question. The results are confirmed if we use a much larger, nationally representative survey of more than 30,000 respondents conducted by one of the biggest Russian survey companies FOM in 2011. In principle, it is possible that social media not only changed real attitudes but also the perception of the social acceptability of expressing these attitudes. However, we do not find any evidence that social media reduces the stigma of admitting xenophobic attitudes. The fact that we find the effect of social media on actual attitudes, but not on the expressed ones suggests, that if anything the stigma increased, at least for the respondents who acquired xenophobic attitudes as a result of social media influence. This highlights the importance of using a survey method that reduces concerns with social acceptability, such as list experiments.

Overall, our results indicate that social media lead to an increase in both ethnic hate crimes and xenophobic attitudes in Russia. However, the effect on hate crime is observed only in cities in which there was already a high level of nationalism. Additional evidence indicates that this effect is driven both by facilitating the coordination of nationalists and by persuading people to become more xenophobic. These findings contribute to a growing body of evidence that social media is a complex phenomenon that has both positive and negative effects on the welfare of people (see also Allcott et al, 2019), which has to be taken into account in discussing policy implications of the recent changes in media technologies.

References

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Conflict, Minorities and Well-Being

20180618 Conflict, Minorities and Well-Being Image 01

We assess the effect of the Russo-Georgian conflict of 2008 and the Ukrainian-Russian conflict of 2014 on the well-being of minorities in Russia. Using the Russian Longitudinal Monitoring Survey (RLMS), we find that the well-being of Georgians in Russia suffered negatively from the 2008 Russo-Georgian conflict. In comparison, we find no general effect of the Ukrainian-Russian conflict of 2014 on the Ukrainian nationals’ happiness. However, the life satisfaction of Ukrainians who reside in the southern regions of Russia in close proximity to Ukraine is negatively affected. We also show that the negative effect of conflict is short-lived with no long-term legacy. Additionally, we analyze the spillover effect of conflict on other minorities in Russia. We find that while the well-being of non-Slavic and migrant minorities who have recently moved to Russia is negatively affected, there is no effect on local minorities who have been living in Russia for at least ten years.

Militarized conflict affects a myriad of socioeconomic outcomes, such as the level of GDP (Bove et al. 2016), household welfare (Justino 2011), generalized trust and trust in central institutions (Grosjean 2014), social capital (Guriev and Melnikov 2016), and election turnout (Coupe and Obrizan 2016). Importantly, conflict has also been found to directly affect individual well-being (Frey 2012, Welsch 2008).

However, previous research studying individual well-being in transition countries largely abstracts from heightened political instability and conflict proneness, while this has been particularly pertinent in transition countries. Examples of transition countries facing various types of conflicts are abound, such as Yugoslavia, Ukraine, Tajikistan, Russia, Armenia, Azerbaijan, Moldova, and so on. Therefore, it is imperative to explore how conflict shapes well-being in transition countries.

In a new paper (Gokmen and Yakovlev, forthcoming), we add to our understanding of well-being in transition in relation to conflict. We focus on the effect of Russo-Georgian conflict of 2008 and the Ukrainian-Russian conflict of 2014 on the well-being of minorities in Russia. The results suggest that the well-being of Georgians in Russia suffered negatively from the 2008 Russo-Georgian conflict. However, we find no general effect of the Ukrainian-Russian conflict of 2014 on the Ukrainian nationals’ happiness, while the life satisfaction of Ukrainians who reside in the southern regions of Russia in close proximity to Ukraine is negatively affected. Additionally, we analyze the spillover effect of conflict on other minorities in Russia. We find that while the well-being of non-slavic and migrant minorities who have recently moved to Russia is negatively affected, there is no effect on local minorities who have been living in Russia for at least ten years.

Data and Results

We employ the Russian Longitudinal Monitoring Survey (RLMS) which contains data on small neighborhoods where respondents live. Starting from 1992, the RLMS provides nationally-representative annual surveys that cover more than 4000 households with 10000 to 22000 individual respondents. The RLMS surveys comprise a broad set of questions, including a variety of individual demographic characteristics, health status, and well-being. Our study utilizes rounds 9 through 24 of the RLMS from 2000 to 2015.

In this survey, we identify minorities with the question of “What nationality do you consider yourself?” Accordingly, anybody who answers this question with a non-Russian nationality is assigned to that minority group.

We employ three measures of well-being. Our main outcome variable is “life satisfaction.” The life satisfaction question is as follows: “To what extent are you satisfied with your life in general at the present time?”, and evaluated on a 1-5 scale from not at all satisfied to fully satisfied. Additionally, we use “job satisfaction” and “health evaluation” as outcomes of well-being.

Our results suggest that our primary indicator of well-being, life satisfaction, for Georgian nationals has gone down in the Russo-Georgian conflict year of 2008 compared to the Russian majority (see Figure 1). The magnitude of the drop in life satisfaction is about 39 percent of the mean life satisfaction. Our estimates for the other two well-being indicators, job satisfaction and health evaluation, also indicate a dip in the conflict year of 2008. Lastly, our estimates show that the negative impact of the conflict does not last long. Although there is a reduction in the well-being of Georgians both on impact in 2008 and in the immediate aftermath in 2009, the rest of the period until 2015 is no different from the pre-2008 period.

Figure 1. Life Satisfaction of Georgian Nationals in Russia


Source: Authors’ own construction based on RLMS data and diff-in-diff estimates.

Furthermore, when we investigate the effect of the Ukrainian-Russian conflict of 2014, we find no negative effect on the life satisfaction of Ukrainians. One explanation for why the happiness of Ukrainians in Russia does not seem to be negatively affected in 2014 is that the degree of integration of Ukrainians into the Russian society is much stronger than the degree of integration of Georgians. On the other hand, our heterogeneity analysis reveals that in the southern parts of Russia closer to the Ukrainian border, where there are more Ukrainians who have ties to Ukraine, Ukrainian nationals are differentially more negatively affected by the 2014 conflict. The differential reduction in the happiness of Ukrainians is about 19 percent of the mean life satisfaction.

Moreover, we also look into whether there is any spillover effects of the Russo-Georgian and the Ukrainian-Russian conflicts on the well-being of other minorities. We first carry out a simple exercise on non-Slavic minorities of Russia. We pick the sample of non-Slavic ex-USSR nationals that are similar to Georgians in their somatic characteristics, such as hair color and complexion. This group of people include the nationals of Azerbaijan, Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan and Tajikistan. We treat this group as “the countries with predominantly non-Slavic population” as their predominant populations are somatically different from the majority Russians, and thus, might either have been subject to discrimination or might have feared a minority backlash to themselves during the times of conflict. This conjecture finds some support below in Figure 2 in terms of violence against minorities. We observe in Figure 2 that hate crimes and murders based on nationality and race peak in 2008.

Our estimates also support the above hypothesis and propose that there is some negative effect of the 2008 conflict on non-slavic minorities’ happiness as well as their job satisfaction, whereas 2014 conflict has no effect.

Figure 2. Hate Murders in Russia over Time

Source: Sova Center

Next, we investigate the spillover effects of conflict on Migrant Minorities. Migrant minorities are minorities who have been living in their residents in Russia for less than 10 years. We conjecture that these minorities, as opposed to the minorities who have been in place for a long time, could be more susceptible to any internal or external conflict between Russia and some other minority group for fear that they themselves could also be affected. Whereas other types of longer-term resident minorities, which we call Local Minorities, are probably less vulnerable since they have had more time to establish their networks, job security, and most likely also have Russian citizenship. Our estimates back up the above conjecture and demonstrate that migrant minorities suffer negatively from the spillover effects of the 2008 conflict onto their well-being captured by any of the three measures, and not from the 2014 conflict, whereas there is no negative impact on local minorities.

Conclusion

In this paper, instead of focusing on the direct impact of conflict on happiness in war-torn areas, we contribute to the discussion on conflict and well-being by scrutinizing the well-being of people whose country of origin experiences conflict, but they themselves are not in the war zone. Additionally, we show that some other minority groups also suffer from such negative spillovers of conflict. Being aware of such negative indirect effects of conflict on well-being is essential for policy makers, politicians and researchers. Most policy analyses ignore such indirect costs of conflict, and this study highlights the bleak fact that the cost of conflict on well-being is probably larger than it has been previously estimated.

References

  • Bove, V.; L. Elia; and R. P. Smith, 2016. “On the heterogeneous consequences of civil war,” Oxford Economic Papers.
  • Coupe, T.; and M. Obrizan, 2016. “Violence and political outcomes in Ukraine: Evidence from Sloviansk and Kramatorsk”, Journal of Comparative Economics, 44, 201-212.
  • Frey, B. S., 2012. “Well-being and war”, International Review of Economics, 59, 363-375.
  • Gokmen, Gunes; and Evgeny Yakovlev, forthcoming. “War and Well-Being in Transition: Evidence from Two Natural Experiments”, Journal of Comparative Economics.
  • Grosjean, P., 2014. “Conflict and social and political preferences: Evidence from World War II and civil conflict in 35 European countries” Comparative Economic Studies, 56, 424-451.
  • Guriev, S.; and N. Melnikov, 2016. “War, inflation, and social capital,” American Economic Review: Papers & Proceedings, 106, 230-35.
  • Justino, P., 2011. “The impact of armed civil conflict on household welfare and policy,” IDS Working Papers.
  • Welsch, H., 2008. “The social costs of civil conflict: Evidence from surveys of happiness” Kyklos, 61, 320-340.

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.