Tag: income
Laissez-faire Covid-19: Economic Consequences in Belarus
Despite its traditional paternalistic role, the Belarusian government chose minimal reaction to the Covid-19 pandemic. No meaningful economic or social measures were taken in response to the pandemic. We explore a unique dataset to document how major Covid-related shocks affected the earnings of Belarusians in 2020. We utilize the differential timing and sectoral effects of the shocks to identify the impact of Covid-19 on individual socioeconomic outcomes. Not surprisingly, we find that Covid-related shocks increase the probability of an income reduction. This effect is most pronounced for those employed in the private sector. In the absence of a social security net, vulnerable groups had to cope with the economic consequences of the pandemic on their own.
Introduction
Belarus had its first official case of Covid-19 registered on February 27 and its first death on March 31. At first, the increase in newly registered cases was slower than in most other countries, but at the beginning of April Belarus started to catch up. The peak of the first wave was recorded on May 18 with 943 new daily cases. According to the official statistics, the second wave started in September 2020 and was much more severe than the first one, reaching 1,890 new daily cases by the end of December.
Belarusian authorities did not undertake any substantial interventions, such as lockdowns, to fight the spread of the pandemic. Nevertheless, there were several other key mechanisms through which Covid-19 affected the Belarusian economy. The population’s reaction to the risks of contamination led to a substantial fall in mobility that resulted in decreased sales in retail and services requiring physical interaction. For example, sales in the restaurant industry decreased by 20% in 2020. Lockdowns in major international trade partners such as Russia have led to a decrease in demand for Belarusian exports of goods and transportation services. In the face of these economic challenges, the government focused its attention on supporting full employment and production in state-owned enterprises while ignoring the rest of the economy.
In this brief, we present evidence of the economic effects of Covid-19 in Belarus. We employ a unique dataset on socioeconomic outcomes collected by BEROC to study how individuals are affected by Covid-related shocks in mobility and exports. In order to isolate the effects of these shocks on the well-being of Belarusians, we exploit their timing and sectoral differences.
Measuring Covid-related Shocks
Figure 1 depicts changes in the Yandex self-isolation index which measures the use of Yandex services, including Yandex traffic monitoring and customer mobility compared to the average pre-pandemic day (Yandex DataLens, 2021). Individual everyday mobility started to decline in mid-March, and as the first wave of the pandemic gained momentum, mobility reached its lowest point at the end of April. It started to decline again in November-December 2020 following the second wave.
Figure 1. Yandex self-isolation index in Belarus, 2020
Belarus is a small and open economy with Russia as its main trading partner. The lockdown in Russia that lasted from the end of March until mid-May along with the spring lockdowns in Europe caused a major contraction in external demand for Belarusian goods. Figure 2 shows total physical exports and non-energy physical exports in 2020. The largest difference between total and non-energy exports can be observed in January, February, and March during which Russia and Belarus had an oil-supply dispute. To focus on the effects of the pandemic we use non-energy physical exports to approximate Covid-related exogenous shocks to the economy.
Figure 2. Physical export indices, Belarus
Income Dynamics
To measure the impact of Covid-19 on Belarusian society, BEROC, in cooperation with the marketing and opinion research company SATIO, conducted a series of online surveys representative of the urban population of Belarus (Covidonomics, 2021). The five waves of the 2020 survey were carried out on April 17-22, May 8-11, June 8-15, September 11-16, and November 25-30.
Respondents were asked about recent changes to their income, and also to specify the reasons for income reduction (if this was the case), including depreciation of the ruble, salary cut, furlough, etc. Figure 3 depicts the percentage of individuals who reported an income reduction in the previous month for reasons other than currency depreciation by sector of employment. The income reductions peaked in April-June, with the situation relatively stabilizing by September.
Figure 3. Income dynamics by sector
The fact that the share of respondents reporting termination peaked at 2.9% in May indicates that firms did not use employment reduction to adapt to the pandemic environment. A big share of respondents employed in the service sector reported domestic demand contraction (fewer orders/clients) as a key factor for their income reduction. The industries that took the hardest hit were hospitality-retail and transportation. In early spring, manufacturing appeared to be one of the most affected industries. However, as exports started to recover in June, the share of manufacturing workers that reported an income reduction decreased significantly, becoming one of the lowest across industries.
Identifying the Effects of Covid-19 Shocks
In this section, we estimate the probability of facing a reduction in individual income as well as the likelihood of being furloughed due to the Covid-19 pandemic.
In 2020, the Belarusian economy suffered due to the oil-supply dispute with Russia, the Covid-19 pandemic, and the national political crisis. To isolate the effects of Covid-19 from those driven by the oil dispute and the political crisis, we add interactions between Covid-related shocks and dummies indicating industries affected by those shocks. This implies three interactions with different binary indicators: exports and manufacturing, exports and transportation, and mobility and hospitality/retail.
To estimate these effects, we use a fixed-effects probit regression controlling for sector of employment, education, age, and gender.
Table 1. Probability of income reduction and furlough
Table 1 shows that individuals employed in the hospitality and retail industry face higher risks of an income reduction due to decreased mobility caused by self-isolation behavior. A 10-percentage-point increase in the self-isolation index is associated with a 1.3 percentage point increase in the probability of income reduction for those employed in the retail and hospitality industry. The interaction term between exports and the manufacturing dummy also appears to be statistically significant for various specifications. A 10-percentage-point decline in physical volumes of exports is associated with a 8.6 percentage point increase in the probability of income reduction for manufacturing workers.
Notably, the private sector employment coefficient shows strong statistical significance which highlights the choice of the authorities to support SOEs, with little to no support for the private sector. Being employed in the private sector increases the probability of facing an income reduction by 7.9 percentage points.
The Gender Dimension
Despite concerns that women experience larger economic losses due to consequences of the pandemic (Dang and Nguyen, 2021; Alon et al., 2020b), we do not find a statistically significant effect of gender in our sample. In particular, our results offer no evidence of women being more likely to experience an income reduction during the pandemic, similar to findings in Germany (Adams-Prassl et al. 2020c).
While job losses were uncommon during the Covid-19 crisis in Belarus, being furloughed was one of the most common reasons for an income reduction (11.3% of respondents reported being furloughed in May). We also investigate the separate channels through which individuals lose income due to the Covid-related shocks. Notably, the only channel of income reduction that is more prevalent among women than men is through furlough. This finding is consistent with Adams-Prasslet al. (2020a) who argue that this discrepancy can be explained by gender differences in childcare responsibilities.
Conclusion
Belarus is close to unique in having almost no government response to the Covid-19 pandemic. Despite the absence of lockdowns and other restrictions, the Belarusian economy has experienced several Covid-associated shocks. Due to the economy’s openness to trade, it was seriously affected by export contractions. Belarusians have voluntarily reduced their mobility to minimize health risks which has affected the hospitality and retail industry.
We utilize the differential timing and sectoral impact of Covid-related shocks to estimate the pandemic’s effect on the socioeconomic outcomes of individuals. By using a unique dataset, we find evidence that the pandemic increased the likelihood of income reductions for Belarusians, mainly due to the effects of decreased mobility and fall in exports. We also find that those employed in the private sector were more likely to suffer from negative shocks, reflecting the policy choice of the Belarusian government to only provide economic support to the state sector. Finally, we show that, while women are as likely as men to see their income reduced, they are significantly more likely to be furloughed.
Many Belarusians saw their well-being deteriorating as a result of the Covid-19 pandemic. In the absence of unemployment benefits and other social protection mechanisms (Umapathi, 2020), those economically affected had to bear the cost of the shocks on their own.
References
- Adams-Prassl, A., Boneva, T., Golin, M., and Rauh, C. (2020a). Furloughing. Fiscal Studies, 41(3):591–622.
- Adams-Prassl, A., Boneva, T., Golin, M., and Rauh, C. (2020b). Inequality in the impact of the coronavirus shock: Evidence from real time surveys. Journal of Public Economics, 189:104245.
- Covidonomics project (2020). BEROC and Satio. http://covideconomy.by/
- Dang, H.-A. H. and Nguyen, C. V. (2021). Gender inequality during the Covid-19 pandemic: Income, expenditure, savings, and job loss. World Development, 140:105296.
- Umapathi, N. (2020). Social protection system in Belarus: perspective. Bankovskiy Vestnik, (3):75–80. (in Russian).
- Yandex (2021) Yandex DataLens, https://datalens.yandex.ru/
Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.
Intergenerational Mobility of Russian Households
To understand the nature of income inequality one needs to know how persistent the inequality is across generations. The same inequality levels could conceal different intergenerational mobility. We utilize the Russian Longitudinal Monitoring Survey (RLMS-HSE) to find out how large intergenerational mobility in Russia is as measured by income, educational and occupational mobility. We find that although a sizeable upward intergenerational educational mobility, there is a pronounced occupational immobility and a low level of intergenerational income mobility. Indeed, the position of children in the income distribution is highly correlated with the income position of their parents, especially their mothers.
Sizeable and non-decreasing inequality in Russia poses a threat to social stability and long-term sustainability. Inequality in Russia has remained high throughout the transition period, and even slightly increased in the 2000s; the Gini inequality index rose from 0.397 in 2001 to 0.416 in 2014. The ratio of average incomes of the highest decile to those of the lowest decile also increased from 13.9 to 16 during this same period. This income gap is driven primarily by the gap between incomes of the top decile and all of the others: the top decile is estimated to have thirty percent of total monetary income in the economy. Furthermore, income inequality originates in earnings inequality: the top decile of wage earners gets thirty five percent of total wage earnings in the economy.
A key question is how persistent the inequality is, given that the same inequality levels could conceal different intergenerational mobility. In particular, social stability is challenged when income inequality is stable across generations, or put differently; there is little intergenerational mobility. Economic developments of the last 25 years seem to increase the risks of getting this problem in Russia.
Data and research methodology
We employ Russian Longitudinal Monitoring Survey (RLMS-HSE) to find out how large intergenerational mobility in Russia is as measured by income, educational and occupational mobility (Denisova and Kartseva, 2016). The RLMS-HSE questionnaires in 2006 and 2011 contain questions on dates of birth, education and occupation of the father and mother of the respondent when the respondent was 15 years old.
To study occupational and educational mobility, we use the subsample of respondents of 25-55 years old and utilize the information on education and occupation of the respondent and his/her parents. We then estimate whether the parental education level predicts the probability that children have a university degree, a secondary or a junior professional degree.
To study intergenerational occupational mobility, we estimate influence of parental occupation on the probability that the child works as a manager, a professional, a technician or professional associate, a clerk, a qualified worker or an unskilled worker.
To study the child-parent income correlation based on RLMS is trickier. There is a panel component in RLMS but it is not long enough to study intergenerational mobility directly since we for most cases are not able to observe both parents and children during their working ages. To overcome the problem we impute wages for parents. In particular, we choose respondents aged 25-35 (children) in 2006 (and 2011). We then identify respondents born in the period 1945-1961 (1945-1966 for children in 2001) (‘parents’) and use the labor market information for this group as of 1995 (2001 as robustness check) to impute parental wages. We estimate a wage equation (separately for males and females) on the sample of ‘parents’ and then use the estimated returns (coefficients) and the reported age and education of respondent’s mother and father to impute wages of respondent’s parents.
We follow Björklund and Jantti (1997) to estimate the child-parent correlation of earnings based on the equation:
delta= β0 + β1X+ β2 delta_father + β3 delta_mother + ε
where delta=log(wage/average wage in respective sample), X – age, education, settlement type, region. Standard errors are clustered on primary sampling unit.
Intergenerational educational mobility
Our analysis shows that the education of parents, high professional (university) and secondary professional in particular, is a major determinant of children’s education. Moreover, there are clear signs of upward educational mobility across generations for both males and females: the coefficients in the transition parent-child matrix are significantly higher above the diagonal (Table 1).
Table 1. Father-child education matrix
Source: Authors’ calculations based on RLMS
The probability to have a university degree is 2.4 percentage points higher if the mother’s education is at university level (as compared to secondary school), and 2.1 percentage points higher if the father’s degree is at university level (as compared to secondary school). A secondary professional degree of parents also increases the probability of a child getting a university degree by about 1 percentage point. The probability of having secondary professional degree decreases if the father or mother has a university degree.
Intergenerational correlation of occupations
There are signs of sizeable occupational rigidity between generations, especially for the top two occupational groups (managers and professionals). The probability that a child works in the same occupational group is the highest for parents-professionals: it is 40% for fathers-professionals and 35% for mothers-professionals. Surprisingly, it is also rather high for parents employed as skilled workers – about 20%. These patterns survive controlling for other variables.
Income mobility
The correlation of parent-child wages measured for 2006 data are presented in Table 2. The results point to the sizeable average intergenerational rigidity of relative wages: the wage elasticity of children’s wages with respect to parental wages is about 0.4. This is at the level of the intergenerational wage rigidity in the US (Solon 1999).
There is sizeable gender asymmetry in the rigidity: we observe a high and significant correlation of son-mother wages, but an insignificant correlation of son-father wages. There is no significant correlation of daughter-parents wages.
Table 2. Parent-child income correlations, 2006
Source: Authors’ calculations based on RLMS
Conclusion
Generational poverty stemming from low intergenerational income mobility is a threat for sustainable development in any country. The economic and social development in transition seems to increase the risks of having this problem in Russia. Our estimates show that although there is sizeable upward intergenerational educational mobility in Russia, there is a pronounced occupational immobility, and low level of intergenerational income mobility. Indeed, the position of children in the income distribution is highly correlated with the income position of their parents, especially mothers. These findings are worrisome signals important for the design of policies of sustainable development.
References
- Björklund, Anders; and Markus Jantti, 1997. “Intergenerational Income Mobility in Sweden Compared to the United States,” American Economic Review, 87(5), 1009–18.
- Denisova, Irina; and Marina Kartseva, 2016, “Intergenerational Mobility of Russian Households”, mimeo
- Solon, Gary, 1999. “Intergenerational Mobility on the Labor Market,” Chapter 29 in Handbook of Labor Economics, Vol.3 edited by O.Ashenfelter and D.Card , 1761-1800.
The Economic Complexity of Transition Economies
‘Diversification’ is a constant concern of policy-makers in resource rich economies, but measurement of diversification can be hard. The recently formulated Economic Complexity Index (ECI) is a promising predictor of economic development characterizing the overall complexity and diversity of the economy as a system. The ECI is based on the diversity and ubiquity of a country’s exports. This brief uses ECI to discuss the economic diversity of transition economies in the post-Soviet decades, and the relationship between economic diversification and per capita income.
The search for and construction of appropriate predictors of economic development are among the main goals of economists and policy-makers. Education, infrastructure, rule of law, and quality of governance are all among the commonly used indicators based on inputs. The recently formulated Economic Complexity Index (Hidalgo and Hausmann, 2009) is a new promising predictor of economic development characterizing the overall complexity and diversity of the economy as a system.
Indeed, the importance of production and trade diversification for economic development has been highlighted by the economic literature. Numerous studies have found a positive relationship between diversified and complex export structure, income per capita and growth (Cadot et al., 2011; Hesse, 2006; Hausmann et al., 2007). In line with this, Hausmann et al. (2014) demonstrate the predictive properties of the ECI for economic development and GDP per capita, which implies that the ECI can serve as a useful complement to the input-based measures for policy analysis by reasoning from current outputs to future outputs.
This brief uses the ECI to discuss the evolution of economic diversification, its relationship to per capita income in transition economies in the post-Soviet decades, and its policy implications.
How is economic complexity measured?
The economic complexity index (ECI) is a novel measure that reflects the diversity and ubiquity of a country’s exports. The index considers the number of products a country exports with revealed comparative advantage and how many other countries in the world export such goods. If a country exports a high number of goods and few other countries export these products, then its economy is diversified (a wide range of exports products) and sophisticated (only a few other countries are able to export these goods). Thus, the measure tries to capture not a specific aspect of the economy, but rather its overall sophistication.
For example, Japan, Switzerland, Germany and Sweden have been in a varying order at the top of the ranking of the Economic Complexity Index from 2008 until 2013. This means that these countries export a large number of highly sophisticated products.
In contrast, Tajikistan is among the countries at the bottom of the world ranking by the ECI with raw aluminum, raw cotton and ores making up 85% of all Tajikistan’s exports in 2013. However, not only are Tajikistan’s exports concentrated among very few narrow products, these products are also ubiquitous and the ability to export them does not require knowledge and skills that can be used in the production and exports of many other products.
As the index for each country is constructed relative to other countries’ exports, it is comparable over time.
What can we learn from the economic complexity of transition economies?
The economic complexity index can serve as a useful indicator for understanding transition economies in the post-Soviet period. A strong relationship between GDP per capita and economic complexity is found in the sample of transition economies in Figure 1. This figure presents the relationship for the last year for which data is available for the sample of 13 post-Soviet states and Poland. As can be seen in Figure 1, the economic complexity is positively related to income per capita. This is especially true for Poland, Estonia, Lithuania, Latvia and Russia, who all have higher than average economic complexity and high levels of per capita income. While Belarus and Ukraine also have diverse and complex economies, they have somewhat lower income per capita than the first group.
Figure 1. Economic Complexity and GDP per capita
Source: Data on GDP per capita is from the World Bank, and the data on the Economic Complexity Index is from the Observatory of Economic Complexity.
Natural resource-rich, or rather, oil-rich countries are the exception from the abovementioned correlation. Most transition countries with below than average economic complexity are characterized by low income per capita levels, except for Kazakhstan and Azerbaijan, which are oil-rich countries. Still, the overall picture is straightforward: countries with a complex export structure have a higher level of income.
One of the advantages of a systemic measure like export complexity is its straightforward policy application. The overall diversity and sophistication of the economy can thus be a complementary measure for the assessment of economic progress and development to GDP and GDP per capita, which are more susceptible to the volatile factors such as commodity prices.
Figure 2 shows the development of economic complexity for 14 post-Soviet countries and Poland between 1994 and 2013 (due to data availability issues, only one year is available for Armenia).
First, we see that the economic complexity has diverged over time, although there is some similarity in the rankings among countries over time. The initial closeness is likely related to the planned nature of the Soviet economy that aimed to distribute production among Soviet Republics. In the post-Soviet context, however, the more complex economies (Estonia, Belarus, Lithuania, Ukraine, Latvia, Russia) kept or increased their sophistication and diversity of exports. Poland is the leading economy in terms of complexity, both in the beginning and towards the end of the sample period. Belarus, the second most complex economy in 2013 and the most complex economy in several years prior, shows an increasing trend in its sophistication of exports. Although its GDP per capita is noticeably lower than what would be expected from such a sophisticated economy, the complex production structure may explain its ability to withstand a permanent high inflation and external macroeconomic shocks. Some others, e.g., Tajikistan and Azerbaijan, saw a decreasing trend in economic complexity; Georgia and Kazakhstan, notably, lost in economic complexity but also in their ranking among their peers.
Figure 2. Economic Complexity of Transition Economies
Source: Data on GDP per capita is from the World Bank, and the data on the Economic Complexity Index is from the Observatory of Economic Complexity.
Conclusion
This brief revisited the economic complexity of transition economies and its evolution since the 1990s. The post-Soviet and other transition countries have had diverging economic development paths: Some have managed to build complex production economies, while others’ comparative advantage remains in raw materials. These differences are also reflected in their income levels.
Across the world, economic diversification is associated with higher per-capita income. As the brief showed, this relationship also holds for the post-Soviet countries; policy-makers should take economic diversification seriously. Increasing economic complexity may well pave the path to higher income levels.
References
- Cadot, O., Carrère, C., & Strauss-Kahn, V. (2011). Export diversification: What’s behind the hump?. Review of Economics and Statistics, 93(2), 590-605.
- Hausmann, R., Hidalgo, C. A., Bustos, S., Coscia, M., Simoes, A., & Yildirim, M. A. (2014). The atlas of economic complexity: Mapping paths to prosperity. Mit Press.
- Hausmann, R., Hwang, J., & Rodrik, D. (2007). What you export matters. Journal of economic growth, 12(1), 1-25.
- Hesse, H. (2006). Export diversification and economic growth. World Bank, Washington, DC.
- Hidalgo, C. A., & Hausmann, R. (2009). The building blocks of economic complexity. proceedings of the national academy of sciences, 106(26), 10570-10575.
Crisis and Trust
Authors: Maxim Ananyev and Sergei Guriev, CEFIR
Our research uses the 2008-2009-crisis experience in Russia to identify the relationship between income and trust. In 2009, Russian GDP fell an 8-percent drop in 2009. The impact of the crisis was very uneven among Russian regions because of their differences in industrial structure inherited from the Soviet times. We find that the regions that specialize in producing capital goods, as well as those depending on oil and gas, had a more substantial income decline during the crisis. The variation in the industrial structure allows creating an instrument for the change in income. After instrumenting average regional income, we find that the effect of income on generalized social trust (the share of respondents saying that most people can be trusted) is statistically and economically significant. Controlling for conventional determinants of trust, we show that a 10 percent decrease in income is associated with 5-percentage point decrease in trust. Given that the average level of trust in Russia is 25%, this magnitude is substantial. We also find that the post-crisis economic recovery did not restore the pre-crisis trust level. Trust recovered only in those regions where the 2009 decline in trust was small. In the regions with the large decline in trust during the crisis, trust in 2014 was still 10 percentage points below its pre-crisis level. This has straightforward policy implications: governments should pursue generous countercyclical policies especially in the areas that are the most vulnerable to macroeconomic shocks.