Tag: energy reforms

Navigating Environmental Policy Consistency Amidst Political Change

20240506 Navigating Environmental Policy Image 01

Europe, like other parts of the world, currently grapples with the dual challenges of environmental change and democratic backsliding. In a context marked by rising populism, misinformation, and political manipulation, designing credible sustainable climate policies is more important than ever. The 2024 annual Energy Talk, organized by the Stockholm Institute of Transition Economics (SITE), gathered experts to bring insight into these challenges and explore potential solutions for enhancing green politics.

In the last decades, the EU has taken significant steps to tackle climate change. Yet, there is much to be done to achieve climate neutrality by 2050. The rise of right-wing populists in countries like Italy and Slovakia, and economic priorities that overshadow environmental concerns, such as the pause of environmental regulations in France and reduced gasoline taxes in Sweden, are significantly threatening the green transition. The current political landscape, characterized by democratic backsliding and widespread misinformation, poses severe challenges for maintaining green policy continuity in the EU. The discussions at SITEs Energy Talk 2024 highlighted the need to incorporate resilience into policy design to effectively manage political fluctuations and ensure the sustainability and popular support of environmental policies. This policy brief summarizes the main points from the presentations and discussions.

Policy Sustainability

In his presentation, Michaël Aklin, Associate Professor of Economics and Chair of Policy & Sustainability at the Swiss Federal Institute of Technology in Lausanne, emphasized the need for environmental, economic, and social sustainability into climate policy frameworks. This is particularly important, and challenging given that key sectors of the economy are difficult to decarbonize, such as energy production, transportation, and manufacturing. Additionally, the energy demand in Europe is expected to increase drastically (mainly due to electrification), with supply simultaneously declining (in part due to nuclear power phaseout in several member states, such as Germany). Increasing storage capacity, enhancing demand flexibility, and developing transmission infrastructure all require large, long-term investments, and uncompromising public policy. However, these crucial efforts are at risk due to ongoing political uncertainty. Aklin argued that a politics-resilient climate policy design is essential to avoid market fragmentation, decrease cooperation, and ensure the support for green policies.  Currently, industrial policy is seen as the silver bullet, in particular, because it can create economies of scale and ensure political commitment to major projects. However, as Aklin explained, it is not an invincible solution, as such projects may also be undermined by capacity constraints and labour shortages.

Energy Policy Dynamics

Building on Aklin’s insights, Thomas Tangerås, Associate Professor at the Research Institute of Industrial Economics, explored the evolution of Swedish energy policy. Tangerås focused on ongoing shifts in support for nuclear power and renewables, driven by changes in government coalitions. Driven by an ambition to ensure energy security, Sweden historically invested in both hydro and nuclear power stations. In the wake of the Three Mile Island accident, public opinion however shifted and following a referendum in 1980, a nuclear shutdown by 2010 was promised. In the new millennia, the first push for renewables in 2003, was followed by the right-wing government’s nuclear resurgence in 2010, allowing new reactors to replace old ones. In 2016 there was a second renewable push when the left-wing coalition set the goal of 100 percent renewable electricity by 2040 (although with no formal ban on nuclear). This target was however recently reformulated with the election of the right-wing coalition in 2022, which, supported by the far-right party, launched a nuclear renaissance. The revised objective is to achieve 100 percent fossil-free electricity by 2040, with nuclear power playing a crucial role in the clean energy mix.

The back-and-forth energy policy in Sweden has led to high uncertainty. A more consistent policy approach could increase stability and minimize investment risks in the energy sector. Three aspects should be considered to foster a stable and resilient investment climate while mitigating political risks, Tangerås concluded: First, a market-based support system should be established; second, investments must be legally protected, even in the event of policy changes; and third, financial and ownership arrangements must be in place to protect against political expropriation and to facilitate investments, for example, through contractual agreements for advance power sales.

The Path to Net-Zero: A Polish Perspective

Circling back to the need for climate policy to be socially sustainable, Paweł Wróbel, Energy and climate regulatory affairs professional, Founder of GateBrussels, and Managing Director of BalticWind.EU, gave an account of Poland’s recent steps towards the green transition.

Poland is currently on an ambitious path of reaching net-zero, with the new government promising to step up the effort, backing a 90 percent greenhouse gas reduction target for 2040 recently proposed by the EU However, the transition is framed by geopolitical tensions in the region and the subsequent energy security issues as well as high energy prices in the industrial sector. Poland’s green transition is further challenged by social issues given the large share of the population living in coal mining areas (one region, Silesia, accounts for 12 percent of the polish population alone). Still, by 2049, the coal mining is to be phased out and coal in the energy mix is to be phased out even by 2035/2040 – optimistic objectives set by the government in agreement with Polish trade unions.

In order to achieve this, and to facilitate its green transition, Poland has to make use of its large offshore wind potential. This is currently in an exploratory phase and is expected to generate 6 GW by 2030, with a support scheme in place for an addition 12 GW. In addition, progress has been achieved in the adoption of solar power, with prosumers driving the progress in this area. More generally, the private sectors’ share in the energy market is steadily increasing, furthering investments in green technology. However, further investments into storage capacity, transmission, and distribution are crucial as the majority of Polands’ green energy producing regions lie in the north while industries are mainly found in the south.

Paralleling the argument of Aklin, Wróbel also highlighted that Poland’s high industrialization (with about 6 percent of the EU’s industrial production) may slow down the green transition due to the challenges of greening the energy used by this sector. The latter also includes higher energy prices which undermines Poland’s competitiveness on the European market.

Conclusion

The SITE Energy Talk 2024 catalyzed discussions about developing lasting and impactful environmental policies in times of political and economic instability. It also raised questions about how to balance economic growth and climate targets. To achieve its 2050 climate neutrality goals, the EU must implement flexible and sustainable policies supported by strong regulatory and political frameworks – robust enough to withstand economic and political pressures. To ensure democratic processes, it is crucial to address the threat posed by centralised governments decisions, political lock-ins, and large projects (with potential subsequent backlashes). This requires the implementation of fair policies, clearly communicating the benefits of the green transition.

On behalf of the Stockholm Institute of Transition Economics, we would like to thank Michaël Aklin, Thomas Tangerås and Paweł Wróbel for participating in this year’s Energy Talk.

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Nuclear Renaissance: Powering Sweden’s Climate Policy

20240414 Nuclear Renaissance Image 01

The current Swedish government has put nuclear energy front and center of their climate policies, with a goal of two new reactors in commercial operation by 2035, and around ten new reactors by 2045. In light of this revived focus, this policy brief tackles the following question: is a large-scale expansion of nuclear energy an environmental and economically efficient solution to achieve Sweden’s climate policy objective of net zero emissions by 2045? To answer this, three important aspects are analyzed: potential emission reductions, the cost-effectiveness of such abatement, and the practicality of the proposed timelines. As a case study, we draw lessons from the large-scale build-out of nuclear power in France in the late 1970s. The results show that France significantly reduced emissions of carbon dioxide (CO2), at a net economic benefit, and with an average reactor construction time of around six years. However, today’s situation in Sweden contrasts sharply with France in the 1970s. Electricity production in Sweden is already low-carbon, the cost of alternative zero-carbon electricity sources has plummeted, and construction costs and timelines for nuclear power have steadily increased since the 1970s. Therefore, new reactors in Sweden are likely to yield only modest emission reductions at a relatively high abatement cost, and with construction times around two to three times longer than those achieved by France.

A Renewed Focus on Nuclear Energy

When the current government in Sweden, led by Prime Minister Ulf Kristersson, came into power in 2022, they swiftly made changes to Sweden’s environment and climate policies. The Ministry of Environment was abolished, transport fuel taxes were reduced, and the energy policy objective was changed from “100 percent renewable” to “100 percent fossil free”, emphasizing that nuclear energy was now the cornerstone in the government’s goal of reaching net zero emissions (Government Office 2023, Swedish Government 2023). This marked a new turn in Sweden’s relationship with nuclear energy: from the construction of four different nuclear power plants in the 1970s – of which three remain operational today – to the national referendum on nuclear energy in 1980, where it was decided that no new nuclear reactors should be built and that existing reactors were to be phased-out by 2010 (Jasper 1990).

Today’s renewed focus on nuclear energy, especially as a climate mitigation policy tool is, however, not unique to Sweden. As of 2022, the European Commission labels nuclear reactor construction as a “green investment”, the US has included production tax credits for nuclear energy in their 2023 climate bill the Inflation Reduction Act, and France’s President Macron is pushing for a “nuclear renaissance” in his vision of a low-carbon future for Europe (Gröndahl 2022; Bistline, Mehrotra, and Wolfram 2023; Alderman 2022).

France As a Case Study

In the 1970s, France conducted an unprecedented expansion of nuclear energy, which offers valuable insights for Sweden’s contemporary nuclear ambitions. Relying heavily on imported oil for their energy needs, France enacted a drastic shift in energy policy following the 1973 oil crisis. In the subsequent decade, France ordered and began the construction of 51 new nuclear reactors. The new energy policy – dubbed the Messmer Plan – was summarized by the slogan: “All electric, all nuclear” (Hecht 2009).

To support the expansion of new reactors, the French government made use of loan guarantees and public financing (Jasper 1990). A similar strategy has recently been proposed by the Swedish government, with suggested loan guarantees of up to 400 billion kronor (around $40 billion) to support the construction of new reactors (Persson 2022).

France’s Emissions Reductions and Abatement Costs

To make causal estimates of the environmental and economic effects of France’s large-scale expansion of nuclear energy, we need a counterfactual to compare with. In a recent working paper – titled Industrial Policy and Decarbonization: The Case of Nuclear Energy in France – I, together with Jared Finnegan from University College London, construct this counterfactual as a weighted combination of suitable control countries. These countries resemble France’s economy and energy profile in the 1960s and early 1970s, however, they did not push for nuclear energy following the first oil crisis. Our weighted average comprises five European countries: Belgium, Austria, Switzerland, Portugal, and Germany, with falling weights in that same order.

Figure 1 depicts per capita emissions of CO2 from electricity and heat production in France and its counterfactual – ‘synthetic France’ – from 1960 to 2005. The large push for nuclear energy led to substantial emission reductions, an average reduction of 62 percent, or close to 1 metric ton of CO2 per capita, in the years after 1980.

Figure 1. CO2 emissions from electricity and heat in France and synthetic France, 1960-2005.

Andersson and Finnegan (2024).

Moreover, Figure 1 shows that six years elapsed from the energy policy change until emission reductions began. This time delay matches the average construction time of around six years (75 months on average) for the more than 50 reactors that were constructed in France following the announcement of the Messmer Plan in 1974.

Table 1. Data for abatement cost estimates.

Andersson and Finnegan (2024).

Lastly, these large and relatively swift emission reductions in France were achieved at a net economic gain. Table 1 lists the data used to compute the average abatement cost (AAC): the total expenses incurred for the new policy (relative to the counterfactual scenario), divided by the CO2 emissions reduction.

The net average abatement cost of -$20 per ton of CO2 is a result of the lower cost of electricity production (here represented by the levelized cost of electricity (LCOE)) of new nuclear energy during the time-period, compared to the main alternative, namely coal, – the primary energy source in counterfactual synthetic France. LCOE encompasses the complete range of expenses incurred over a power plant’s life cycle, from initial construction and operation to maintenance, fuel, decommissioning, and waste handling. Accurately calculated, LCOE provides a standardized metric for comparing the costs of energy production across different technologies, countries, and time periods (IEA 2015).

Abatement Costs and Timelines Today

Today, more than 50 years after the first oil crisis, many factors that made France’s expansion of nuclear energy a success are markedly different. For example, the cost of wind and solar energy – the other two prominent zero-carbon technologies – has plummeted (IEA 2020). Further, construction costs and timelines for new nuclear reactors in Europe have steadily increased since the 1970s (Lévêque 2015).

Figure 2 depicts the LCOE for the main electricity generating technologies between 2009 and 2023 (Bilicic and Scroggins 2023). The data is for the US, but the magnitudes and differences between technologies are similar in Europe. There are two important aspects of this figure. First, after having by far the highest levelized cost in 2009, the price of solar has dropped by more than 80 percent and is today, together with wind energy, the least-cost option. Second, the cost of nuclear has steadily increased, contrary to how technology cost typically evolves over time, meriting nuclear power the “a very strange beast” label (Lévêque, 2015, p. 44). By 2023, new nuclear power had the highest levelized cost of all energy technologies.

Regarding the construction time of nuclear reactors, these have steadily increased in both Europe and the US. The reactor Okiluoto 3 in Finland went into commercial operation last year but took 18 years to construct. Similarly, the reactor Flamanville 3 in France is still not finished, despite construction beginning 17 years ago. The reactors Hinkley Point C in the UK were initiated in 2016 and, after repeated delays, are projected to be ready for operation in 2027 at the earliest (Lawson 2022). Similarly, in the US, construction times have at least doubled since the first round of reactors were built. These lengthened constructions times are a consequence of stricter safety regulations and larger and more complex reactor designs (Lévêque, 2015). If these average construction times of 12-18 years are the new norm, Sweden will, in fact, not have two new reactors in place by 2035. Further, it would need to begin construction rather soon if the goal of having ten new reactors by 2045 is to be achieved.

Figure 2. Levelized Cost of Electricity, 2009-2023.

Source: Bilicic and Scroggins (2023).

Sweden’s Potential Emission Reductions

The rising costs and extended construction times for new reactors are notable concerns, yet the crucial measure of Sweden’s new climate policy is its capacity to reach net zero emissions across all sectors. Figure 3 depicts per capita emissions of CO2 from electricity and heat production in Sweden and OECD countries between 1960 and 2018.

Figure 3. Sweden vs. the OECD average.

Source: IEA (2022).

In 2018, the OECD’s per capita CO2 emissions from electricity and heat averaged slightly over 2 metric tons. In comparison, Sweden’s per capita emissions at 0.7 metric tons are low and represent only 20 percent of total per capita emissions. Hence, the potential for substantial emission cuts through nuclear expansion is limited. By contrast, Sweden’s transport sector, with CO2 emissions more than two times larger than the emissions from electricity and heat, presents a greater chance for impactful reductions. Yet, current policies of reduced transport fuel taxes are likely to increase emissions. The electrification of transportation could leverage the benefits of nuclear energy for climate mitigation, but broader policies are then needed to accelerate the adoption of electric vehicles.

Conclusion

As Sweden rewrites its energy and climate policies, nuclear energy is placed front and center – a position it has not held since the 1970s. Yet, while nuclear energy may experience a renaissance in Sweden, it will not be the panacea for reaching net zero emissions the current government is hoping for. Expected emission reductions will be modest, abatement costs will be relatively high and, if recent European experiences are to be considered an indicator, the aspirational timelines are likely to be missed.

Considering these aspects, it’s imperative for Sweden to adopt a broader mix of climate policies to address sectors such as transportation – responsible for most of the country’s emissions. Pairing the nuclear ambitions with incentives for an accelerated electrification of transportation could enhance the prospects of achieving net zero emissions by 2045.

References

  • Alderman, L. (2022). France Announces Major Nuclear Power Buildup. The New York Times. February 10, 2022.
  • Andersson, J. and Finnegan, J. (2024). Industrial Policy and Decarbonization: The Case of Nuclear Energy in France. Working Paper.
  • Bilicic, G. and Scroggins, S. (2023). 2023 Levelized Cost of Energy+. Lazard.
  • Bistline, J., Mehrotra, N. and Wolfram, C. (2023). Economic Implications of the Climate Provisions of the Inflation Reduction Act. Tech. rep., National Bureau of Economic Research.
  • Government Office. (2023). De första 100 dagarna: Samarbetsprojekt klimat och energi. Stockholm, January 25, 2023.
  • Gröndahl, M-P. (2022). Thierry Breton: ’Il faudra investir 500 milliards d’euros dans les centrales nucléaires de nouvelle génération’.  Le Journal du Dimanche January 09, 2022.
  • Hecht, G. (2009). The Radiance of France: Nuclear Power and National Identity after World War II. MIT Press.
  • IEA. (2015). Projected Costs of Generating Electricity: 2015 Edition. International Energy Agency. Paris.
  • IEA. (2020). Projected Costs of Generating Electricity: 2020 Edition. International Energy Agency. Paris.
  • IEA. (2022). Greenhouse Gas Emissions from Energy (2022 Edition). International Energy Agency. Paris.
  • Jasper, J. M. (1990). Nuclear politics: Energy and the state in the United States, Sweden, and France, vol 1126. Princeton University Press.
  • Lawson, A. (2022). Boss of Hinkley Point C blames pandemic disruption for 3bn delay. The Guardian. May 20, 2022.
  • Lévêque, F. (2015). The economics and uncertainties of nuclear power. Cambridge University Press.
  • Persson, I. (2022). Allt du behöver veta om ’Tidöavtalet. SVT Nyheter. 14 October, 2022.
  • Swedish Government. (2023). Regeringens proposition 2023/24:28 Sänkning av reduktionsplikten för bensin och diesel. State Documents, Sweden. Stockholm, October 12, 2023.

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

The Energy and Climate Crisis Facing Europe: How to Strike the Right Balance

20220524 The Energy and Climate Crisis Image 01

Policymakers in Europe are currently faced with the difficult task of reducing our reliance on Russian oil and gas without worsening the situation for firms and households that are struggling with high energy prices. The two options available are either to substitute fossil fuel imports from Russia with imports from other countries and cut energy tax rates to reduce the impacts on firms and household budgets, or to reduce our reliance on fossil fuels entirely by investing heavily in low-carbon energy production. In this policy brief, we argue that policymakers need to also take the climate crisis into account, and avoid making short-term decisions that risk making the low-carbon transition more challenging. The current energy crisis and the climate crisis cannot be treated as two separate issues, as the decisions made today will impact future energy and climate policies. To exemplify how large-scale energy policy reforms may have long-term consequences, we look at historical examples from France, the UK, and Germany, and the lessons we can learn to help guide us in the current situation.

The war in Ukraine and the subsequent sanctions against Russia have led to a sharp increase in energy prices in the EU since the end of February 2022. This price increase came after a year when global energy prices had already surged. For instance, import prices for energy more than doubled in the EU during 2021 due to an unusually cold winter and hot summer, as well as the global economic recovery following the pandemic and multiple supply chain issues. Figure 1 shows that the price of natural gas traded in the European Union has increased steadily since the summer of 2021, with a strong hike in March 2022 following the beginning of the war.

Figure 1. Evolution of EU gas prices, July 2021-May 2022

Source: https://tradingeconomics.com/commodity/eu-natural-gas

Concerns about energy dependency, towards Russian gas in particular, are now high on national and EU political agendas. An embargo on imports of Russian oil and gas into the EU is currently discussed, but European governments are worried about the effects on domestic energy prices, and the economic impact and social unrest that could follow. Multiple economic analyses argue, however, that the economic effect in the EU of an embargo on Russian oil and gas would be far from catastrophic, with estimated reductions in GDP ranging from 1.2-2.2 percent. But a reduction in the supply of fossil fuels from Russia would need to be compensated with energy from other sources, and possibly supplemented with demand reductions.

In parallel, on April 4th, the Intergovernmental Panel on Climate Change (IPCC) released a new report on climate change. One chapter analyses different energy scenarios, and finds that all scenarios that are compatible with keeping the global temperature increase below 2°C involve a strong decrease in the use of all fossil fuels (Dhakal et al, 2022). This reduction in fossil fuel usage over the coming decades is illustrated in red in Figure 2.

It is thus important that, while EU countries try to decrease their dependency on Russian fossil fuels and cushion the effect of energy-related price increases, they also accelerate the transition to a low-carbon economy. And how they manage to balance these short- and long-run objectives will depend on the energy policy decisions they make. For instance, if policymakers substitute Russian oil and gas with increased coal usage and new import terminals for LNG, this can lead to a “carbon lock in” and make the low-carbon transition more challenging.  In this policy brief, we analyze what lessons can be drawn from past historical events that lead to large-scale structural changes in energy policy. Events that all shaped our current energy systems and conditions for climate policy.

Figure 2. Four energy scenarios compatible with a 2°C temperature increase by 2100.

Source: IPCC sixth assessment report on Mitigation of Climate Change, chapter 3, p23

Structural Changes in Energy Policy in France, the UK, and Germany

We focus on three “energy policy turning points” triggered by three geopolitical, political or environmental crises: the French nuclear plan triggered by the 1973 oil crisis; the UK early closure of coal mines and the subsequent dash for gas in the 1990s, influenced by the election of Margaret Thatcher in 1979; and the German nuclear phase-out triggered by the 2011 Fukushima catastrophe.

In response to the global oil price shock of 1973, France adopted the “Messmer plan”. The aim was to rapidly transition the country away from dependence on imported oil by building enough nuclear capacity to meet all the country’s electricity needs. Two slogans summarised its goals: “all electric, all nuclear”, and “in France, we may not have oil, but we have ideas” (Hecht 2009). The first commissioned plants came online in 1980, and between 1979-1988 the number of reactors in operation in France increased from 16 to 55. As a consequence, the share of nuclear power in the total electricity production rose from 8 to 80 percent, while the share of fossil fuels fell from 65 to 8 percent.

Figure 3. French electricity mix

Source: Data on electricity and heat production in France is provided by the IEA (2022).

In the UK, the election of Margaret Thatcher in 1979 opened the way for large market-based reform of the energy sector. Thatcher’s plan to close dozens of coal pits triggered a year-long coal miners’ strike in 1984-85. The ruling Conservative party eventually won against the miners’ unions and the coal industry was deeply restructured, with a decrease in domestic employment – not without social costs (Aragon et al, 2018) – and an increase in coal imports. At the same time, the electricity market’s liberalization in the 1990s facilitated the development of gas infrastructure. As an indirect and unintended consequence, when climate change became a prominent issue at the global level in the 2000s, there was no strong pro-coal coalition left in the UK (Rentier et al, 2019). Aided by a portfolio of policies making coal-fired electricity more expensive – a carbon tax in particular – the coal phase-out was relatively easy and fast (Wilson and Staffel, 2018, Leroutier 2022): between 2012 and 2020, the share of coal in the electricity production dropped from 40 to 2 percent.

In 2011, the Fukushima nuclear catastrophe in Japan triggered an early and unexpected phase-out of nuclear energy in Germany. The 2011 “Energiewende” (energy transition) mandated a phase-out of nuclear power plants by 2022, while including provisions to reduce the share of fossil fuel from over 80 percent in 2011 to 20 percent in 2050. The share of nuclear energy in the electricity production in Germany was halved in a decade, from 22 percent in 2010 to 11 percent in 2020. At the same time, the share of renewable energy increased from 13 to 36 percent, and that of natural gas from 14 to 17 percent.

In these three examples, climate objectives were never the main driver of the decision. Nevertheless, in the case of France and the UK, the crisis resulted in an energy sector that is arguably more low-carbon than it would have been without the crisis. Although the German nuclear phase-out was accompanied by large subsidies to renewable energies, its effect on the energy transition is ambiguous: some argue that the reduction in nuclear electricity production was primarily offset by an increase in coal-fired production (Jarvis et al, 2022).

The three crises also had different consequences in terms of dependence on fossil fuel imports. The French nuclear plan resulted in an arguably lower energy dependency on imported fossil fuels. The closure of coal mines in the UK had ambiguous effects on energy security, with an increase in coal imports and the use of domestic gas from the North Sea. Finally, Germany’s nuclear phase-out, combined with the objective of phasing out coal, has been associated with an increase in the use of fossil fuels from Russia: gas imports remained stable between 2011 and 2020, but the share coming from Russia increased by 60 percent over the period. In 2020, Russia stood for 66 percent of German gas imports (Source: Eurostat). Which brings us back to the current war in Ukraine.

The Current Crisis is Different

The context in which the current energy crisis is unfolding is different from the three above-mentioned events in two important ways.

First, scientific evidence on the relationship between fossil fuel use, CO2 emissions and climate damages has never been clearer: we know quite precisely where the planet is heading if we do not drastically reduce fossil fuel use in the coming decade. From recent research in economics, we also know that price signals work and that increased prices on fossil fuels result in lower demand and emission reductions (Andersson 2019; Colmer et al. 2020; Leroutier 2022). High fuel prices can also have long-term impacts on consumption patterns: US commuters that came of driving age during the oil prices of the 70s, when gasoline prices were high, still drive less today (Severen and van Benthem, 2022). The other way around, low fossil fuel prices have the potential to lock in energy-intensive production: plants that open when electricity and fossil fuel prices are low have been found to consume more energy throughout their lifetime, regardless of current prices (Hawkins-Pierot and Wagner, 2022).

Second, alternatives to fossil fuels have never been cheaper. It is most obvious in the case of electricity production, where technological progress and economies of scale have led to a sharp decrease in the cost of renewable compared to fossil fuel technologies. As shown in Figure 4, between 2010 and 2020 the cost of producing electricity from solar PV has decreased by 85 percent and that of producing electricity from wind by 68 percent. From being the most expensive technologies in 2010, solar PV and wind are now the cheapest. Given the intermittency of these technologies, managing the transition to renewables requires developing electricity storage technologies. Here too, prices are expected to decrease: total installed costs for battery electricity storage systems could decrease by 50 to 60 percent by 2030 according to the International Renewable Agency.

Finding alternatives to fossil fuels has historically been more challenging in the transport sector. However, recent reductions in battery costs, and an increase in the variety of electric vehicles available to customers, have led to EVs taking market share away from gasoline and diesel-powered cars in Europe and elsewhere. The costs of the battery packs that go into electric vehicles have fallen, on average, by 89 percent in real terms from 2010 to 2021.

Figure 4. Evolution of the Mean Levelised Cost of Energy by Technology in the US

Source: Lazard

Options for Policy-Makers

Faced with a strong increase in fossil fuel prices and an incentive to reduce our reliance on oil and gas from Russia, policy-makers have two options: increase the availability and decrease the price of low-carbon substitutes – by, for example, building more renewable energy capacity and subsidizing electric vehicles – or cut taxes on fossil fuels and increase their supply, both domestically and from other countries.

Governments have pursued both options so far. On the one hand, the Netherlands, the UK, and Italy announced an expansion of wind capacities compared to what was planned, in an attempt to reduce their dependence on Russian gas, and France ended gas heaters subsidies. On the other hand, half of EU member states have cut fuel taxes for a total cost of €9 billion by the end of March 2022, the UK plans to expand oil and gas drilling in the North Sea, and Italy might re-open coal-fired plants.

To guide policymakers faced with the current energy crisis, there are valuable lessons to draw from the experiences of energy policy reform in France, the UK and Germany. France’s push for nuclear energy in the 1970s shows that large-scale structural reform of electricity and heat production is possible and may lead to large drops in CO2 emissions and an economy less dependent on domestic or foreign supplies of fossil fuels. A similar “Messmer plan” could be implemented in the EU today, with the goal of replacing power plants using coal and natural gas with large-scale solar PV parks, wind farms and batteries for storage. Similarly, the German experience shows the potential danger of implementing a policy to alleviate one concern – the risk of nuclear accidents – with the consequence of facing a different concern later on – the dependence on fossil fuel imports.

One additional challenge is that the current energy crisis calls for a short-term response, while investments in low-carbon technologies made today will only deliver in a few years. Short-term energy demand reduction policies can help, on top of long-term energy efficiency measures. For example, a 1°C decrease in the temperature of buildings heated with gas would decrease gas use by 10 billion cubic meters a year in Europe, that is, 7 percent of imports from Russia. Similarly, demand-side policies could reduce oil demand by 6 percent in four months, according to the International Energy Agency.

Ending the reliance on Russian fossil fuels and alleviating energy costs for firms and households is clearly an important objective for policymakers. However, by signing new long-term supply agreements for natural gas and cutting energy taxes, policymakers in the EU may create a carbon lock-in and increase fossil fuel usage by households, thereby making the inevitable low-carbon transition even more difficult. The solutions thus need to take the looming climate crisis into account. For example, any tax relief or increased domestic fossil fuel generation should have a clear time limit; more generally, all policies decided today should be evaluated in terms of their contribution to domestic and European climate objectives. In this way, the current energy crisis is not only a challenge but also a historic opportunity to accelerate the low-carbon transition.

References

  • Andersson, Julius J. 2019. “Carbon Taxes and CO2 Emissions: Sweden as a Case Study.” American Economic Journal: Economic Policy, 11(4): 1-30.
  • Aragón, F. M., Rud, J. P., & Toews, G. 2018. “Resource shocks, employment, and gender: Evidence from the collapse of the UK coal industry.” Labour Economics, 52, 54–67. doi: 10.1016/j.labeco.2018.03.007
  • Colmer, Jonathan, et al. 2020. “Does pricing carbon mitigate climate change? Firm-level evidence from the European Union emissions trading scheme.” Centre for Economic Performance Discussion Paper, No. 1728, November 2020.
  • Dhakal, S., J.C. Minx, F.L. Toth, A. Abdel-Aziz, M.J. Figueroa Meza, K. Hubacek, I.G.C. Jonckheere, Yong-Gun Kim, G.F. Nemet, S. Pachauri, X.C. Tan, T. Wiedmann, 2022: Emissions Trends and Drivers. In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926.004
  • IPCC. 2022. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al hourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926
  • Hawkins-Pierot, J & Wagner, K. 2022, “Technology Lock-In and Optimal Carbon Pricing,” Working Paper
  • Hecht, Gabrielle. 2009. The Radiance of France: Nuclear Power and National Identity after World War II. MIT press.
  • Jarvis, S., Deschenes, O., & Jha, A. 2022. “The Private and External Costs of Germany’s Nuclear Phase-Out.” Journal of the European Economic Association, jvac007. doi: 10.1093/jeea/jvac007
  • Leroutier, M. 2022. “Carbon pricing and power sector decarbonization: Evidence from the UK.” Journal of Environmental Economics and Management, 111, 102580. doi: 10.1016/j.jeem.2021.102580
  • Le Coq, C & Paltseva,E. 2022. “What does the Gas Crisis Reveal About European Energy Security?” FREE Policy Brief
  • Rentier, G., Lelieveldt, H., & Kramer, G. J. 2019. “Varieties of coal-fired power phase-out across Europe.” Energy Policy, 132, 620–632. doi: 10.1016/j.enpol.2019.05.042
  • Severen, C., & van Benthem, A. A. (2022). “Formative Experiences and the Price of Gasoline.” American Economic Journal: Applied Economics, 14(2), 256–84. doi: 10.1257/app.20200407 :
  • Wilson, I.A.G., Staffell, I., 2018. “Rapid fuel switching from coal to natural gas through effective carbon pricing.” Nature Energy 3 (5), 365–372.

Disclaimer: Opinions expressed in policy briefs and other publications are those of the authors; they do not necessarily reflect those of the FREE Network and its research institutes.

Environmental Policy in Eastern Europe | SITE Development Day 2021

20210517 Carbon Tax Regressivity FREE Network Image 06

The need for urgent climate action and energy transformation away from fossil fuels is widely acknowledged. Yet, current country plans for emission reductions do not reach the requirements to contain global warming under 2°C. What is worse, there is even reasonable doubt about the commitment to said plans given recent history and existing future investment plans into fossil fuel extraction and infrastructure development.  This policy brief shortly summarizes the presentations and discussions at the SITE Development Day Conference, held on December 8, 2021, focusing on climate change policies and the challenge of a green energy transition in Eastern Europe.

Climate Policy in Russia

The first section of the conference was devoted to environmental policy in Russia. As Russia is one of the largest exporters of fossil fuel in the world, its policies carry particular importance in the context of global warming.

The head of climate and green energy at the Center for Strategic Research in Moscow, Irina Pominova, gave an account of Russia’s current situation and trends. Similar to all former Soviet Union countries, as seen in Figure 1, Russia had a sharp decrease in greenhouse gas emissions (hereinafter referred to as GHG emissions) during the early 90s due to the dramatic drop in production following the collapse of the Soviet Union. Since then, the level has stabilized, and today Russia contributes to about 5% of the total GHG emissions globally. The primary source of GHG emissions in Russia comes from the energy sector, mainly natural gas but also oil and coal. The abundance of fossil fuels has also hampered investments in renewable resources, constituting only about 3% of the energy balance, compared to the global average of 10%

Figure 1. Annual greenhouse gas emissions per capita

Note: Greenhouse gas emissions are expressed in metric tons of CO2 equivalents. Source: Emissions Database for Global Atmospheric Research (EDGAR).

Pominova noted that it is a massive challenge for the country to reach global energy transformation targets since the energy sector accounts for over 20% of national GDP and 28% of the federal budget. Yet, on a positive note, the number of enacted climate policies has accelerated since Russia signed the Paris Agreement in 2019. One notable example is the federal law on the limitation of GHG emissions. This law will be enforced from the end of 2021 and will impose reporting requirements for the country’s largest emitters. The country’s current national climate target for 2030 is to decrease GHG emissions by 30% compared to the 1990 level. As shown in Figure 1, this would imply roughly a 10 percent reduction from today’s levels given the substantial drop in emissions in the 1990’s.

Natalya Volchkova, Policy Director at CEFIR in Moscow, discussed energy intensity and the vital role it fills in Russia’s environmental transition. Energy intensity measures an economy’s energy efficiency and is defined as units of energy per unit of GDP produced. Volchkova emphasized that to facilitate growth in an environmentally sustainable way it is key to invest in technology that improves energy efficiency. Several regulatory policy tools are in place to promote such improvements like bottom-line energy efficiency requirements, sectoral regulation, and bans on energy-inefficient technologies. Yet, more is needed, and a system for codification and certification of the most environmentally friendly technologies is among further reforms under consideration.

As a Senior Program Manager at SIDA, Jan Johansson provided insights on this issue from an international perspective. Johansson gave an overview of SIDA’s cooperation with Russia in supporting and promoting environmental and climate policies in the country. The main financial vehicle of Swedish support to Russia with respect to environmental policy has been a multilateral trust fund established in 2002 under the European Union (EU) Northern Dimension Environmental Partnership (NDEP). One of the primary objectives of the cooperation has been to improve the environment in the Baltic and Barents Seas Region of the Northern Dimension Area. Over 30 NDEP projects in Russia and Belarus have been approved for financing so far. Seventeen of those have been completed, and the vast majority have focused on improving the wastewater treatment sector.

Johansson also shed light on the differences that can exist between governments in their approach to environmental policy. For example, in the area of solid waste management, Russia prefers large-scale solutions such as landfills and ample sorting facilities. In Sweden and Western Europe, governments have a more holistic view founded on spreading awareness in the population, recycling, corporate responsibility, and sorting at the source.

Environmental Transition in Eastern Europe

In the second part of the conference environmental policies and energy transformation in several other countries in the region were discussed.

Norberto Pignatti, Associate Professor and Centre Director at ISET Policy Institute, talked about the potential for a sustainable energy sector and current environmental challenges in Georgia. The country is endowed with an abundance of rivers and sun exposure, making it a well-suited environment for establishing the production of renewable energy such as wind, solar, and hydro. As much as 95 % of domestic energy production comes from renewable sources. Yet, domestic energy production only accounts for 21% of the country’s total consumption, and 58% of imported energy comes from natural gas and 33% from coal. Furthermore, the capacity of renewable energy sources has declined over the last ten years, and particularly so for biofuel due to the mismanagement of forests. A notable obstacle Georgia faces in its environmental transition is attracting investors. Low transparency and inclusiveness from the government in discussions about environmental policy, along with inaccurate information from the media, has led to a low public willingness to pay for such projects. Apart from measures to overcome the challenges mentioned, the government is currently working on a plan to impose emission targets on specific sectors, invest in energy efficiency and infrastructure, and support the development of the renewable energy sector.

Like Georgia, Poland is a country where energy consumption is heavily reliant on imports and where coal, oil, and gas stand for most of the energy supply. On top of that, Poland faces significant challenges with air quality and smog and a carbon-intensive energy sector. On the positive end, Poland established a government-industry collaboration in September 2021, that recognizes offshore wind as the primary strategic direction of the energy transition in Poland. Pawel Wróbel, Founder and Managing Director of BalticWind.EU, explained that the impact of the partnership will be huge in terms of not only energy security but also job creation and smog mitigation. The plan implies the installation of 5.9 GW of offshore wind capacity by 2030 and 11GW by 2040. Wróbel also talked about the EU’s European Green Deal and its instrumental role in accelerating the energy transition in Poland. By combining EU-wide instruments with tailor-made approaches for each of the member states, the Deal targets a 55% reduction in GHG emissions by 2030 through decarbonization, energy efficiency, and expanding renewable energy generation. Michal Myck, Director of CenEA, highlighted the role of social acceptance in accelerating the much-needed energy transition in Poland. In particular, to build political support, there is a crucial need for designing carbon taxes in a way that ensures the protection of vulnerable households from high energy prices.

Adapting to the European Green Deal will also create challenges for countries outside of the EU, especially if a European Carbon Border Adjustment Mechanisms (CBAM) is put in place in 2026 as suggested. Two participants touched on this topic in the context of Belarus and Ukraine respectively. Yauheniya Shershunovic, researcher at BEROC, talked about her research on the economic implications of CBAM in Belarus. It is estimated that the introduction of CBAM can be equivalent to an additional import duty on Belarusian goods equal to 3.4-3.8% for inorganic chemicals and fertilizers, 6.7-13.7% for metals, and 6.5-6.6% for mineral products. Maxim Fedoseenko, Head of Strategic Projects at KSE, shared similar estimations for Ukraine, suggesting that the implementation of CBAM will lead to an annual loss of €396 million for Ukrainian businesses and a decrease in national GDP of 0.08% per year.

An example of Swedish support to strengthen environmental policies in Eastern Europe was presented by Bernardas Padegimas, Team Leader at the Environmental Policy and Strategy Team at the Stockholm Environment Institute. The BiH ESAP 2030+ project is supporting Bosnia and Herzegovina in preparing their environmental strategy. This task is made more challenging by the country’s unique political structure with two to some extent politically autonomous entities (and a district jointly administered by the two), and elites from the three different major ethnic groups having guaranteed a share of power. The project therefore aims to include a broad range of stakeholders in the process, organized into seven different working groups with 659 members on topics ranging from waste management to air quality, climate change and energy. The project also builds capacity in targeted government authorities, raises public awareness of environmental problems, and goes beyond just environmental objectives: mainstreaming gender equality, social equity and poverty reduction. The project is 80 percent finished and will produce a strategy and action plan for the different levels of governance in the country’s political system.  There is also a hope that this process can serve as a model for consensus building around important but at times contentious policy issues more generally in the country.

Public Opinion and Energy Security

Finally, Elena Paltseva, Associate Professor at SITE, and Chloé le Coq, Professor at the University of Paris II Panthéon-Asses (CRED), shared two joint studies relating to the green transition in Europe.

Recent research shows that individual behavioral change has a vital role to play in the fight against climate change, both directly and indirectly through changes in societal attitudes and policies motivated by role models. A precondition for this to happen is a broad public recognition of anthropogenic climate change and its consequences for the environment. The first presentation by Paltseva and Le Coq focused on public perceptions about climate change in Europe (see this FREE policy brief for a detailed account). Using survey data the study explores variation in climate risk perceptions between Western Europe, the non-EU part of Eastern Europe, and Eastern European countries that are EU members. The results show that those living in non-EU Eastern European countries are on average less concerned about climate change. The regional difference can partly be explained by low salience and informativeness of environmental issues in the public discourse in these countries. To support this explanation, they study the impact of extreme weather events on opinions on climate change with the rationale that people who are more aware of climate change risks are less likely to adjust their opinion after experiencing an extreme weather event. They find that the effect of extreme weather events is higher in countries with less independent media and fewer climate-related legislative efforts, suggesting that the political salience of the environment and the credibility of public messages affects individuals’ perceptions of climate change risks.

The second presentation concerned energy security in the EU, and the impact of the environmental transition. It was argued that natural gas will play an important role in Europe’s green transition for two reasons. First, since the transition implies a higher reliance on intermittent renewable energy sources, there will be an increased need for use of gas-fired power plants to strengthen the supply reliability. Second, the electrification of the economy along with the phasing out of coal, oil, and nuclear generation plants will increase the energy demand. Today, about 20% of EU’s electricity comes from natural gas and 90% of that gas comes from outside EU, with 43% coming from Russia. To emphasize what issues can arise when the EU relies heavily on external suppliers, the presentation discussed a Risky External Energy Supply Index (Le Coq and Paltseva, 2009) that considers the short-term impact of energy supply disruptions. This index assesses not only the importance of the energy type used by a country but also access to different energy suppliers (risk diversification). The index illustrates that natural gas is riskier than oil or coal since natural gas importers in the EU depend to a greater extent on a single or few suppliers. Another crucial component of the security of gas supplies arises from the fact that 77% of EU’s net gas imports arrive through pipelines, which creates an additional risk of transit. Here, the introduction of new gas transit routes (from already existing suppliers) may increase diversification and decrease risks to the countries having direct access to the new route. At the same time, countries that share other pipelines with countries that now have direct access may lose bargaining power vis-à-vis the gas supplier in question, as demand through those pipelines could fall. Le Coq illustrated this point applying the Transit Risk Index developed in Le Coq and Paltseva (2012) to the introduction of the North Stream 1 pipeline. She concluded that the green transition and associated increase in demand for natural gas is likely to be associated with higher reliance on large gas producers, such as Russia, and resulting in energy security risks and imbalance in the EU. One way to counteract this effect is to exercise EU’s buyer power vis-a-vis Russia within the EU common energy policy. While long discussed, this policy has not been fully implemented so far.

Concluding Remarks

This year’s SITE Development Day conference gave us an opportunity to highlight yet another key issue, not only for Eastern Europe, but for the whole world: global warming and energy transformation. Experts from across the region, and policymakers and scholars based in Sweden, offered their perspectives on the challenges that lie ahead, but also highlighted initiatives and investments hopefully leading the way towards a brighter future.

List of Participants

  • Chloé Le Coq, Professor of Economics at the University of Paris II Panthéon-Assas (CRED). Paris, France. Research Fellow at SITE.
  • Maxim Fedoseenko, Head of Strategic Projects at KSE Institute. Kyiv, Ukraine.
  • Jan Johansson, Senior Program Manager, SIDA. Stockholm, Sweden.
  • Michal Myck, Director of CenEA. Szczecin, Poland.
  • Bernardas Padegimas, Team Leader: Environmental Policy and Strategy, Stockholm Environmental Institute. Stockholm, Sweden.
  • Elena Paltseva, Associate Professor, SITE/SSE/NES. Stockholm, Sweden
  • Norberto Pignatti, Associate Professor of Policy at ISET-PI, and Head of the Energy and Environmental Policy Institute at ISET-PI. Tbisili, Georgia.
  • Irina Pominova, Head of Climatwe and Green Energy at the Center for Strategic Research. Moscow, Russia.
  • Yauheniya Shershunovic, Researcher at BEROC, Minsk, Belarus. PhD Candidate at the Center for Development Research (ZEF). Uni Bonn.
  • Natalya Volchkova, Policy Director at CEFIR, Assistant Professor at the New Economic School (NES). Moscow, Russia.
  • Pawel Wróbel, Founder and Managing Director of BalticWind.EU. Poland.
  • Julius Andersson, Researcher at SITE. Stockholm, Sweden.
  • Anders Olofsgård, Associate Professor and Deputy Director at SITE. Stockholm, Sweden.

Changes in Oil Price and Economic Impacts

Authors: Chloé Le Coq and Zorica Trkulja, SITE.

Oil has for decades been perceived as a necessary and highly addictive energy commodity, fueling the world economy. It is a crucial input good for most of the net-oil consumer countries, and it is an important source of revenue for the net-oil supplier countries. This means that any changes in the oil price will affect the entire world economy. However, the extent to which the oil-price fluctuations matter for the economy depends on the perspective (e.g. whether it is that of the macro economy, international trade, firm strategies, or the climate economy). In this policy brief, we outline the answers to this question that were provided at the 9th SITE Energy Day, held at the Stockholm School of Economics on November 5, 2015.